1 Overview

This handout reviews the basics of degree constructions from Kennedy & McNally (2005:§3) (henceforth KM05), Kennedy (2007:§3) (K07), and Syrett et al. (2009) (SKL). For much more in a similar vein, see Morzycki 2015. The associated homework assignment asks you to explore some alternative approaches and compare them with this one.

2 Core claims

(1)
 a. d is the type of degrees.
 b. D_d is the domain of degrees. We assume it to be totally ordered, i.e., a scale.

(2) Gradable adjective meanings as measure function (type (e,d))

 a. $[\text{tall}]^{M,g,c} = \lambda x_c (\text{the height of } x \text{ in context } c)$
 b. $[\text{expensive}]^{M,g,c} = \lambda x_c (\text{the price of } x \text{ in context } c)$

(3) Scale structures

 relative \begin{align*}
 \text{totally open} & : \quad \odot & \text{tall, short, long, expensive, …} \\
 \text{lower closed} & : \quad \bullet & \text{wet, impure, bent, visible, awake, …} \\
 \text{absolute} \begin{cases}
 \text{upper closed} & : \quad \circ & \text{dry, pure, straight, flat, full, empty, …} \\
 \text{totally closed} & : \quad \bullet & \text{opaque, open, closed, invisible, …}
 \end{cases}
 \end{align*}

(4) Pos-morphemes

 a. $[\text{pos}_{\text{rel}}]^{M,g,c} = \lambda m_{(e,d)} \lambda x_c (m(x) \geq s(m))$

 “s is a context-sensitive function that chooses a standard of comparison in such a way as to ensure that the objects that the positive form is true of ‘stand out’ in the context of utterance, relative to the kind of measurement that the adjective encodes.” (K07:17)
 b. $[\text{pos}_{\text{max}}]^{M,g,c} = \lambda m_{(e,d)} \lambda x_c (m(x) = \max(m))$
 c. $[\text{pos}_{\text{min}}]^{M,g,c} = \lambda m_{(e,d)} \lambda x_c (m(x) > \min(m))$

(5) Alternative denotations for adjectives

 a. $\lambda m_{(e,d)} \lambda k_{(e,t)} \lambda x_c (m(x) > \text{norm}(k)(m))$
 b. $\lambda m_{(e,d)} \lambda f_{(e,t)} \lambda x_c \left[\text{defined iff } f(x) = T\right] m(x)$
(6) Phrasal comparatives
 a. \[\text{than}_{\text{phrasal}}^{M,g,c} = \lambda x_e \ x \]
 b. \[\text{more}_{\text{phrasal}}^{M,g,c} = \lambda m_{(e,d)} \ \lambda y_e \ \lambda x_e (m(x) > m(y)) \]
 c. \[\text{less}_{\text{phrasal}}^{M,g,c} = \lambda m_{(e,d)} \ \lambda y_e \ \lambda x_e (m(x) < m(y)) \]

(7) Clausal comparatives
 a. \[\text{than}_{\text{clausal}}^{M,g,c} = \lambda D_{(d,e)} (\max(D)) \]
 b. \[\text{more}_{\text{clausal}}^{M,g,c} = \lambda m_{(e,d)} \ \lambda d_d \ \lambda x_e (m(x) > d) \]
 c. \[\text{less}_{\text{clausal}}^{M,g,c} = \lambda m_{(e,d)} \ \lambda d_d \ \lambda x_e (m(x) < d) \]

(8) Alternative denotations for phrasal comparatives
 a. \[\text{more}_{\text{A\text{-}not\text{-}A}}^{M,g,c} = \lambda m_{(e,d)} \ \lambda y_e \ \lambda x_e (\exists d (m(x) \geq d \land \neg (m(y) \geq d)) \] (Seuren 1973)
 b. \[\text{more}_{\text{max}}^{M,g,c} = \lambda m_{(e,d)} \ \lambda y_e \ \lambda x_e (\max \{d : m(x) \geq d\} > \max \{d : m(y) \geq d\}) \] (von Stechow 1984; Heim 2001)

(9) Interpretive economy: “Maximize the contribution of the conventional meanings of the elements of a sentence to the computation of its truth conditions.” (K07:36)

3 Important examples

(10) Jesse is tall.

\[\text{a degree} \quad \text{a degree} \]
\[\text{tall(Jesse)} \quad \text{tall(Jessie)} \]
\[\text{Jesse} \quad \lambda x \ \text{tall(x)} > \text{tall(Jessie)} \quad \text{tall(Jessie)} : \text{tall} \]
\[\lambda x \ \text{tall(x)} > \text{tall(Jessie)} : \text{tall} \]
\[\text{posy} \quad \text{tall(Jessie)} \]
\[\text{posy and posy in a model with a scale in a model with a scale in a model with a scale in a model with a scale} \]
\[\text{would be undefined by assumption} \]

\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
\[\text{not strictly speaking} \]
(11) The glass is full.

\[\forall x \ (\text{full}(x) = \max(\text{full})) \]

\[\forall x \ (\text{full}(x) \geq \min(\text{full})) \]

(12) The table is wet.

\[\forall x \ (\text{wet}(x) \geq \min(\text{wet})) \]
(13) a. two-thirds closed

well-formed because the closed nature of the side means that we can measure at the 2/3 point.

b. *two-thirds tall

- ill-formed (undefined) because there simply is not a 2/3 point on an open scale.

- actual use of this phrase might lead a listener to conclude that the speaker thinks we’re in a context with such endpoints for tall. (whether such speakers are cooperative is a separate issue)

(14) a. The Mars Pathfinder mission was expensive.

b. My watch was expensive.

c. Kyle’s car is an expensive BMW, though it’s not expensive for a BMW.

Suggests that the standard is not set by the head noun but perhaps is set by a phrase like this one.
(15) Everyone in my family is tall.

\[
\text{everyone (} \forall x \text{ tall}(x) \Rightarrow s(tall))
\]

\[
\text{everyone} \quad \forall x \text{ tall}(x) \Rightarrow s(tall, x)
\]

\[
\text{po}s(e, c) \quad \text{tal}
\]

\[
\forall m \lambda x \quad \text{tall}(x) \Rightarrow s(\text{tall}, x)
\]

\[
\text{creates the space to have a constant standard for every entity/measure function pair, which does not} \\
\text{explain how we determine these values but at least allows for the requisite variation}
\]

\[
(\exists k \forall z \quad \text{tall}(z) \Rightarrow s(\text{tall}, z))
\]

\[
\text{K is a function from entities to certain values; z is a free variable.}
\]
(16) Jesse is taller than Sandy.

(17) Jesse is taller than Sandy is.
(18) a. Jesse is taller than every student (is).

b. Jesse is taller than some student (is).

For extensive discussion of the challenges posed by these examples, see Alex Djenidi’s 2014 Stanford thesis on adjectival comparatives.
4 The case for absolute adjectives

4.1 Adverbs for distinguishing scales (KM05:§3; K07:§4.2)

(19) a. Maximality: completely, fully, totally, absolutely, 100%, perfectly, . . .
 b. Proportion: half, mostly, most of the way, two-thirds, three-sevenths, . . .
 c. Minimality: slightly, somewhat, partially, . . .

(20)

<table>
<thead>
<tr>
<th></th>
<th>Totally open</th>
<th>Totally closed</th>
<th>Upper closed</th>
<th>Lower closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximality</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>*</td>
</tr>
<tr>
<td>Proportion</td>
<td>*</td>
<td>✓</td>
<td>✓</td>
<td>*</td>
</tr>
<tr>
<td>Minimality</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>✓</td>
</tr>
</tbody>
</table>

The missing patterns in (20) are ruled out semantically. For example, proportion advs require upper and lower ends, so no adj could allow them but disallow maximality or minimality advs. Similarity, no adj could allow maximality and minimality advs without also allowing proportion advs.

Acquisition angle on the adverbs 30-month-olds “appear to be aware of such distributional differences and recruit them in word learning” (Syrett & Lidz 2010:258)

4.2 Context-dependence

Skeptics of this analysis of absolute adjectives often point to our contextually-determined intuitions about what counts as full, wet, etc., as evidence that all gradable modification is relative. Informally, I’d say this is the first and most resolute objection people have to the account. KM05 and K07 attempt to counter these objections using intuitions and theoretical considerations:

On the whole, it is fairly easy to come up with other ‘imprecise’ uses of absolute adjectives, calling into question our claim that these adjectives represent a semantic class distinct from relative gradable adjectives. While it is arguably true that in some cases imprecise uses reflect a semantic shift away from a ‘default’ absolute meaning toward a purely relative one (a point to which we return in §4.3), we nevertheless contend that there are both theoretical and empirical arguments for maintaining the claim that absolute adjectives are semantically distinct from relative adjectives. (KM05:357)

one interpretation of these facts is that these expressions also have context-dependent denotations, like relative GAs. On this view (advocated by, e.g. Lewis 1970, 1979; Kamp 1975; and Pinkal 1995), interpretive variability is always fundamentally semantic, and expressions like full and straight […] have meanings that, like big and long, require fixing the value of some contextual parameter as part of determining their extensions. Another interpretation is that all of these expressions, including relative GAs, have fixed denotations, and the observed variability is a purely pragmatic phenomenon (Austin 1979; Travis 1994, 1996). (SKL:28)
Theoretical proposal Invoke Lasersohn’s (1999) pragmatic halos, arguing that this is imprecision, not vagueness of the sort that we find with relative adjectives (KM05:357; K07:fn. 22, p. 25, and §3.2.1; SKL:28).

4.3 Entailments (KM05:§4.2; K07:§3.2.2)

(21) Lower-closed: ¬adj(x) entails that x has 0 degree of adj, so adj(x) ∧ ¬adj(x) should be contradictory:

The spot is not visible, but I can see a little bit of it. (KM05:359)

(22) Upper-closed: adj(x) entails that x has the maximal degree of adj, so adj(x) ∧ ◊(more adj(x)) should be contradictory:

My glass is FULL, but it could be fuller. (K07:26)

(23) Relative: Neither entailment holds:

 a. Sam is not tall, but his height is normal for his age.

 b. That film is interesting, but it could be more interesting. (KM05:359)

Potential objection Skeptics of the absolute/relative distinction are likely to take issue with these judgments. KM05 point out that the upper-closed test is “difficult to test, since maximum-standard adjectives readily allow imprecise uses” (p. 359), which is part of what’s at issue.

4.4 Imprecision and precisification (K07:§3.2.1)

(24) a. We might judge this true (true enough) if the rod is, say, 995 cm:

 The rod is 10 meters long.

 b. However, we can precisify with such measure phrases:

 We need a 10 meter long rod for the antenna, but this one is 1 millimeter short of 10 meters, so unfortunately it won’t work.

 c. Relative adjectives do not easily admit of such precisification:

 ?? We need a long rod for the antenna, but since long means ‘greater than 10 meters’ and this one is 1 millimeter short of 10 meters, unfortunately it won’t work.

 d. Absolute adjectives behave like precise measure phrases wrt exhaustification:

 The rod for the antenna needs to be straight, but this one has a 1 mm bend in the middle, so unfortunately it won’t work.

Potential objection Even relative adjectives admit of precise uses, so it’s not clear that we have a categorical distinction here.
4.5 Sorites paradox

Only relative adjectives give rise to it; we accept (25.P2), thereby triggering the paradoxical conclusion (25.P2), but we reject (26.P2), thereby blocking the paradoxical (26.P2).

(25)
P1. A theater with 1000 seats is big.
P2. Any theater with 1 fewer seat than a big theater is big.
C. Therefore, any theater with 10 seats is big.

(26)
P1. A theater in which every seat is occupied is full.
P2. Any theater with one fewer occupied seat than a full theater is full.
C. Therefore, any theater in which half of (none of, etc.) the seats are occupied is full.

Potential objection In imprecise contexts, we can probably get people to accept P2 even for maximal standard adjectives, which will generate the paradox.

References

