1 Specific–opaque is blocked

\[
||\text{want}||^M = \lambda \varphi \lambda d \varphi (\text{Bul}(d, \varnothing) \subseteq \{\varnothing' \mid d \in \varphi(\varnothing')\})
\]

\[
||\text{inexpensive_dress}||^M = \\
\begin{bmatrix}
\varnothing_1 & \to & \{a\} \\
\varnothing_2 & \to & \{\} \\
\varnothing_3 & \to & \{a\} \\
\varnothing_4 & \to & \{c, d\}
\end{bmatrix}
\]

\[
||\text{buy}||^M = \\
\begin{bmatrix}
\langle m, \varnothing_1 \rangle & \to & \{\varnothing_2, \varnothing_3\} \\
\langle m, \varnothing_2 \rangle & \to & \{\varnothing_1, \varnothing_3\} \\
\langle m, \varnothing_3 \rangle & \to & \{\varnothing_2, \varnothing_4\} \\
\langle m, \varnothing_4 \rangle & \to & \{\varnothing_2, \varnothing_3\}
\end{bmatrix}
\]

\[
\text{Bul} = \\
\begin{bmatrix}
\langle m, \varnothing_1 \rangle & \to & \{\varnothing_2, \varnothing_3\} \\
\langle m, \varnothing_2 \rangle & \to & \{\varnothing_1, \varnothing_3\} \\
\langle m, \varnothing_3 \rangle & \to & \{\varnothing_2, \varnothing_4\} \\
\langle m, \varnothing_4 \rangle & \to & \{\varnothing_2, \varnothing_3\}
\end{bmatrix}
\]

Define the assignment as \(g(w_i) = \varnothing_i\) and \(g(w) = g(w') = \varnothing_1\)

1. \([
\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w'})]^{M,g} =
\]
2. \([
\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_1})]^{M,g} =
\]
3. \([
\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_2})]^{M,g} =
\]
4. \([
\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_3})]^{M,g} =
\]
5. \([
\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_4})]^{M,g} =
\]
6. \([
\lambda w (m \text{ wants}_w (\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w'})))]\]^{M,g} =
7. \([
\lambda w (m \text{ wants}_w (\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_1})))]\]^{M,g} =
8. \([
\lambda w (m \text{ wants}_w (\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_2})))]\]^{M,g} =
9. \([
\lambda w (m \text{ wants}_w (\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_3})))]\]^{M,g} =
10. \([
\lambda w (m \text{ wants}_w (\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_4})))]\]^{M,g} =
11. \([
\lambda w (m \text{ wants}_w (\lambda w' (m \text{ buy}_{w'} \text{ an inexpensive_dress}_{w_4})))]\]^{M,g} =
12. \([
\lambda w (\text{an inexpensive_dress}_w (\lambda x (m \text{ wants}_w (\lambda w' (m \text{ buy}_{w'} x))))))\]^{M,g} =
13. \([
\lambda w (\text{an inexpensive_dress}_w (\lambda x (m \text{ wants}_w (\lambda w' (m \text{ buy}_{w'} x))))))\]^{M,g} =
2 Specific–opaque attested

Szabó (2010) provides specific, opaque examples in sections 2 and 3. Here’s a simple one that will allow us to continue on with our earlier example.

(14) Mary is in a good mood. While strolling through town, she saw a lovely winter coat in a shop window. She could see the price tag peeking out from behind one of the sleeves, and it said $5. Unbenownst to Mary, part of the tag was not visible; the actual price of the coat was $500.

Mary wants to buy an inexpensive coat.

It is actually quite expensive, though.

3 Szabó’s ‘split quantifiers’ solution

(PA) Predicate abstraction: If i is an index and σ is a sentence then $\llbracket i \sigma \rrbracket^{M, g}$ is the function $f \in D_{(e, t)}$ such that $f(d) = \llbracket \sigma \rrbracket^{M, g[i \leftarrow d]}$ for all $d \in D_e$

(RT) Restricted traces: If t_i is a trace and ν is a noun, then $\llbracket t_i \nu \rrbracket^{M, g} = g(i)$ if $\llbracket \nu \rrbracket^{M, g}(g(x)) = T$, else undefined.

(T) $\llbracket \text{thing} \rrbracket^{M, g} = \text{the identity function on objects in } D_{(e, t)}$

References