Lawful bicycle riding given the circumstances

Chris Potts, Ling 230b: Advanced semantics and pragmatics, Fall 2022

Nov 4

1 Circumstantial modal base

Assume $D_s = \{w_1, w_2, w_3, w_4\}$. To keep things simple, let's assume that we are focused on world w_2 , where the circumstances are that I crash my bike if I ride with one hand, and I am riding my bike home:

(1) $\mathbf{mb}(w_2) = \begin{cases} [I \text{ crash my bike if I ride with one hand}]] \\ [I am riding my bike home]] \end{cases} = \begin{cases} \{w_2, w_3\} \\ \{w_1, w_2, w_3, w_4\} \end{cases}$

For later, note that $\bigcap \mathbf{mb}(w_2) = \{w_2, w_3\} \cap \{w_1, w_2, w_3, w_4\} = \{w_2, w_3\}.$

2 Bicycle laws ordering source

Here are the ideals for bike riding:

(2)
$$\mathbf{os} = \left\{ \begin{array}{c} \llbracket \text{I wear a helmet when biking} \\ \llbracket \text{I signal with my left hand when turning} \\ \llbracket \text{I keep both hands on the handlebars when biking} \\ \\ \llbracket \text{I do not crash my bike} \\ \end{bmatrix} \right\} = \left\{ \begin{array}{c} \left\{ w_1, w_2, w_3, w_4 \right\} \\ \left\{ w_1 \right\} \\ \left\{ w_3, w_4 \right\} \\ \left\{ w_1, w_2, w_3 \right\} \\ \\ \\ \end{bmatrix} \right\}$$

These can't all be satisfied at once. In particular, the second and third contradict each other.

3 Bicycle laws partial order on worlds

Here are all the pairs for <_{os}:

(3) a. $w_1 <_{os} w_2 \quad \# \text{ because } \{\{w_1, w_2, w_3, w_4\}, \{w_1, w_2, w_3\}\} \subset \{\{w_1, w_2, w_3, w_4\}, \{w_1\}, \{w_1, w_2, w_3\}\}$ b. $w_3 <_{os} w_2$ c. $w_3 <_{os} w_4$

4 The best worlds

For world w_2 , the best worlds for our modal base given our ordering source are

(4)
$$\operatorname{best}_{os}(\mathbf{mb}(w_2)) = \{ w \in \bigcap \mathbf{mb}(w_2) : \text{there is no } w' \in \bigcap \mathbf{mb}(w_2) \text{ such that } w' <_{os} w \} = \{ w_3 \}$$

This is the set of worlds in $\bigcap \mathbf{mb}(w_2)$ that never appear on the right side of $<_{os}$ in (3).

5 A modal claim

Given the circumstances and the bicycle laws, I should not signal when riding my bike (in world w_2):

(5) $p = [I \text{ don't signal with my left hand when turning on my bike}] = \{w_2, w_3, w_4\}$

(6)
$$\llbracket \mathbf{must} \rrbracket (\mathbf{mb})(\mathbf{os})(p)(w_2) = T \text{ if for all } w' \in \text{best}_{\mathbf{os}}(\mathbf{mb}(w_2)), w' \in p$$

= T if $\{w_3\} \subseteq \{w_2, w_3, w_4\}$