Problem 1. Let \(\phi \in C^\infty_c(\mathbb{R}^n) \) with \(\int \phi(x) \, dx = 1, \phi \geq 0, \text{supp } \phi \subset B_1(0) \), and let \(\delta_j \to 0 \).

For \(y \in \mathbb{R}^n \), let \(f_{y,j}(x) = \delta_j^{-n} \phi((x-y)/\delta_j) \).

(i) Show that the distribution \(u_{y,j} = \iota_{f_{y,j}} \) given by \(f_{y,j} \) converges to \(\delta_y \) as \(j \to \infty \), i.e.
\[
\lim_{j \to \infty} \int_{\mathbb{R}^n} f_{y,j}(x) \psi(x) \, dx = \psi(y).
\]

(ii) Show that even if \(\psi \) is merely a continuous function of compact support, the function
\[
\psi_j(y) = \int_{\mathbb{R}^n} f_{y,j}(x) \psi(x) \, dx = \int_{\mathbb{R}^n} \delta_j^{-n} \phi((x-y)/\delta_j) \psi(x) \, dx
\]

is actually a \(C^\infty \) function of compact support.

(iii) Show that if \(\psi \) is a continuous function of compact support, then \(\psi_j \to \psi \) uniformly, i.e.
\[
\sup_{y \in \mathbb{R}^n} |\psi_j(y) - \psi(y)| \to 0
\]
as \(j \to \infty \).

Hint: \(\psi \) continuous of compact support implies that \(\psi \) is uniformly continuous, i.e. for all \(\epsilon > 0 \) there exists \(\delta > 0 \) such that \(|\psi(x) - \psi(y)| < \epsilon \) if \(|x-y| < \delta \).

Note: This shows that continuous functions of compact support can be approximated, in the natural norm on continuous functions, by \(C^\infty \) functions of compact support.

Problem 2. Consider the conservation law
\[
u_t + (f(u))_x = 0, \quad u(x,0) = \phi(x),
\]
with \(f \in C^2(\mathbb{R}) \). Let \(v = f'(u) \). Show that if \(f'' \neq 0 \) and \(u \) is continuous and is \(C^1 \) apart from jump discontinuities in its first derivatives then \(v \) has the same properties and satisfies Burgers’ equation. (Note that the Rankine-Hugoniot condition is vacuous: there are no shocks.) If \(f \) is strictly convex, i.e. \(f'' > 0 \), conclude that one can reduce general scalar conservation laws to Burgers’ equation, i.e. that one can find \(u \) by solving for \(v \) first.

Is the same true if \(u \) has jump discontinuities, i.e. is it true that if \(u \) satisfies the Rankine-Hugoniot conditions then \(v \) does as well?

Problem 3. Consider the PDE
\[
u_{tt} - \nabla \cdot (c^2 \nabla u) + qu = 0, \quad u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x),
\]
where \(c, q \geq 0 \), depend on \(x \) only, and \(c \) is bounded between positive constants, i.e. for some \(c_1, c_2 > 0, c_1 \leq c(x) \leq c_2 \) for all \(x \in \mathbb{R}^n \). Assume that \(u \) is \(C^2 \) throughout this problem, and \(u \) is real-valued. (All calculations would go through if one wrote \(|u_t|^2 \), etc., in the complex valued case.)

(i) Fix \(x_0 \in \mathbb{R}^n \) and \(R_0 > 0 \), and for \(t < \frac{R_0}{c_2} \), let
\[
E(t) = \int_{|x-x_0|<R_0-c_2t} (u_t^2 + c(x)^2 |\nabla u|^2 + q(x)u^2) \, dx.
\]

Show that \(E \) is decreasing with \(t \) (i.e. non-increasing). (Hint: to make sure you don’t forget anything in the calculation, do it first on the line, when \(n = 1 \).)
(ii) Suppose that \(\text{supp } \phi, \text{supp } \psi \subset \{ |x| \leq R \} \), i.e. are 0 outside this ball. Show that \(u(x, t) = 0 \) if \(t \geq 0, |x| > R + c_2 t \), i.e. the wave indeed propagates at speed \(\leq c_2 \).

(iii) Show that there is at most one real-valued \(C^2 \) solution of (1).

Problem 4. Consider the wave equation on \(\mathbb{R}^n \):

\[
 u_{tt} - c^2 \Delta u = f, \quad u(x, 0) = \phi(x), \quad u_t(x, 0) = \psi(x),
\]

and write \(x = (x', x_n) \) where \(x' = (x_1, \ldots, x_{n-1}) \)

(i) Show that if

\[
 f(x', x_n, t) = f(x', -x_n, t), \quad \phi(x', x_n) = \phi(x', -x_n), \quad \psi(x', x_n) = \psi(x', -x_n)
\]

for all \(x \) and \(t \), i.e. if \(f, \phi, \psi \) are all even functions of \(x_n \), then \(u \) is an even function of \(x_n \) as well. (Hint: Consider \(u(x', x_n, t) - u(x', -x_n, t) \), show that it solves the homogeneous wave equation with 0 initial conditions.)

(ii) Show that if

\[
 f(x', x_n, t) = -f(x', -x_n, t), \quad \phi(x', -x_n) = -\phi(x', x_n), \quad \psi(x', x_n) = -\psi(x', x_n)
\]

for all \(x \) and \(t \), i.e. if \(f, \phi, \psi \) are all odd functions of \(x_n \), then \(u \) is an odd function of \(x_n \) as well.

(iii) If \(u \) is continuous, and is an odd function of \(x_n \), show that \(u(x', 0, t) = 0 \) for all \(x' \) and \(t \).

(iv) If \(u \) is a \(C^1 \) and is an even function of \(x_n \), show that \(\partial_{x_n} u(x', 0, t) = 0 \) for all \(x' \) and \(t \).

These facts will enable us to solve the wave equation in the half space \(x_n > 0 \) with Dirichlet or Neumann boundary conditions later in the course.

Problem 5. Use the maximum principle for Laplace’s equation on \(\mathbb{R}^n \) to show the following statement: Suppose that \(u \in C^2(\mathbb{R}^n) \) and \(\Delta u = 0 \). Suppose moreover that \(u(x) \to 0 \) at infinity uniformly in the following sense:

\[
 \sup_{|x| > R} |u(x)| \to 0
\]

as \(R \to \infty \). Then \(u(x) = 0 \) for all \(x \in \mathbb{R}^n \). (Hint: Apply the maximum principle shown in class for the ball \(\Omega = \{ x : |x| < R \} \) and for both \(u \) and \(-u\).)

Use this to show that the solution of Laplace’s equation on \(\mathbb{R}^n \):

\[
 \Delta u = f,
\]

with \(f \) given, is unique in the class of functions \(u \) such that \(u \in C^2(\mathbb{R}^n) \) and \(u(x) \to 0 \) at infinity uniformly.

Problem 6. Suppose \(\Omega \) is a bounded \(C^1 \) domain and \(A(x) = (A_{ij}(x))_{i,j=1}^n \) is symmetric, positive definite in the sense that there is \(c_0 > 0 \) such that \(A(x)v \cdot v \geq c_0 |v|^2 \) for all \(v \in \mathbb{R}^n \), \(x \in \bar{\Omega} \), and \(q \geq 0 \), with \(A_{ij} \) being \(C^1 \), \(q \) continuous on \(\bar{\Omega} \). Show that there is \(C > 0 \) such that real valued solutions \(u \in C^2(\bar{\Omega}) \) of the PDE

\[
 \nabla \cdot (A(x)\nabla u) - qu = f
\]

with Dirichlet boundary conditions \(u|_{\partial \Omega} = 0 \) satisfy

\[
 \int_{\Omega} (|\nabla u|^2 + u^2) \, dx \leq C \int_{\Omega} f^2 \, dx.
\]