Problem 1. Solve the inhomogeneous heat equation on the half-line for Dirichlet boundary conditions:

\[u_t - ku_{xx} = f, \quad u(x,0) = \phi(x), \quad u(0,t) = 0, \]

in two different ways:

(i) Using Duhamel’s principle, applied on the half line directly, and the solution formula for the homogeneous equation derived in class/lecture notes (i.e. with \(f = 0 \)) on the half line.

(ii) Using the appropriate extension of \(f \) and \(\phi \) to the whole real line and solving the inhomogeneous PDE on the real line.

Problem 2. Derive Duhamel’s principle for the wave equation on \(\mathbb{R} \)

\[u_{tt} - c^2 \partial_x^2 u = f, \quad u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x), \]

by setting up a first order system for \(U = \begin{bmatrix} u \\ v \end{bmatrix}, \quad v = u_t, \) namely

\[
\begin{align*}
u_t - v &= 0, \quad u(x,0) = \phi(x), \\
v_t - c^2 \partial_x^2 u &= f, \quad v(x,0) = \psi(x).
\end{align*}
\]

Thus, one has

\[\partial_t U - AU = \begin{bmatrix} 0 \\ f \end{bmatrix}, \quad U(0,x) = \begin{bmatrix} \phi(x) \\ \psi(x) \end{bmatrix}, \]

where

\[A = \begin{bmatrix} 0 & \text{Id} \\ c^2 \partial_x^2 & 0 \end{bmatrix}. \]

This is now a first order equation in time, so Duhamel’s principle for first order equations is applicable, and gives the solution of the inhomogeneous equation as

\[U(x,t) = \mathcal{S}(t) \begin{bmatrix} \phi \\ \psi \end{bmatrix}(x) + \int_0^t \mathcal{S}(t-s) \begin{bmatrix} 0 \\ f_s \end{bmatrix}(x) \, ds, \]

where \(\mathcal{S} \) is the solution operator for the homogeneous problem \(\partial_t U - AU = 0 \). You need to work this out explicitly, in particular what \(\mathcal{S} \) is, to derive the solution of the wave equation.

Problem 3. (i) Consider the following eigenvalue problem on \([0, \ell] \):

\[-X'' = \lambda X, \quad X(0) = 0, \quad X'(\ell) = 0. \]

Find all eigenvalues and eigenfunctions.

(ii) Using separation of variables, find the general ‘separated’ solution of the wave equation

\[u_{tt} = c^2 u_{xx}, \quad u(0,t) = 0, \quad u_x(\ell,t) = 0. \]

(iii) Solve the wave equation with initial conditions

\[u(x,0) = \sin(3\pi x/(2\ell)) - 2 \sin(5\pi x/(2\ell)), \quad u_t(x,0) = 0. \]

(iv) Using separation of variables, find the general ‘separated’ solution of the heat equation

\[u_t = ku_{xx}, \quad u(0,t) = 0, \quad u_x(\ell,t) = 0, \]

here \(k > 0 \) constant.
Problem 4. Consider the wave equation on a ring of length 2ℓ. We let x be the arclength variable along the ring, $x \in [-\ell, \ell]$. We would like to understand wave propagation along the ring, so consider the wave equation with periodic boundary conditions:

$$u_{tt} = c^2 u_{xx}, \quad u(-\ell, t) = u(\ell, t), \quad u_x(-\ell, t) = u_x(\ell, t).$$

(i) Find the general ‘separated’ solution.

(ii) Find the solution with initial condition $u(x, 0) = 0$, $u_t(x, 0) = \cos(2\pi x/\ell) - \sin(\pi x/\ell)$, $x \in [-\ell, \ell]$.

(iii) Give an alternative method of solution by extending u to be a 2ℓ-periodic function in x on all of \mathbb{R}, and using d’Alembert’s formula.

(iv) How do singularities of u propagate? That is, if the only singularity of the initial data is at some x_0 (i.e. they are C^∞ elsewhere), where can u be singular? Interpret this physically.

Problem 5. The goal of this problem is to show that if $u \in D'(\mathbb{R}^3)$ and $\Delta u = f$ satisfies $x_0 \notin \text{singsupp } f$, i.e. f is C^∞ near x_0, then u is C^∞ near x_0. This is called elliptic regularity: Δ is elliptic, and for an elliptic operator P if Pu is C^∞ near some x_0 then so is u.

We achieve this as follows.

(i) First suppose that u is a C^2 function. Let $\phi \in C^\infty_c(\mathbb{R}^3)$ be identically 1 near x_0 such that f is C^∞ on supp ϕ. Then show that $\Delta(\phi u) = \phi \Delta u + v$, where v is a compactly supported distribution that vanishes near x_0. Now as $w = \phi u$ is compactly supported,

$$w(x) = -\int_{\mathbb{R}^3} \frac{1}{4\pi |x-y|} \Delta_y(\phi(y)u(y)) \, dy.$$

(ii) Expand $\Delta_y(\phi(y)u(y))$ as above. To analyze

$$\int_{\mathbb{R}^3} \frac{1}{4\pi |x-y|} v(y) \, dy$$

for x near x_0, note that if x is near x_0 and $y \in \text{supp } v$ then $x \neq y$, so $|x-y|^{-1}$ is C^∞. On the other hand, $\phi \Delta u$ is C^∞ by assumption. Write the corresponding part of the convolution as

$$\int_{\mathbb{R}^3} \frac{1}{4\pi |y|} \phi(x-y)(\Delta u)(x-y) \, dy,$$

and deduce that it is C^∞.

(iii) Suppose now that $u \in D'$. Proceed as above, writing

$$w = -\frac{1}{4\pi |x|} * (\Delta(\phi u)),$$

convolution in the sense of distributions (so w is merely a distribution), and show that both parts are C^∞ near x_0. You do not have to be very careful in writing up this part; there are some technicalities, but the point is to get the main idea.