Improper integrals

An improper integral is a definite integral \(\int_a^b f(x) \, dx \) where

I. One (or both) of \(a \) and \(b \) are \(\pm \infty \); and/or
II. the function \(f(x) \) is undefined for some value \(x \) in \([a, b] \) (that is, with \(a \leq x \leq b \)).

Here are some examples of improper integrals:

\[
\begin{align*}
\text{a)} & \quad \int_1^\infty \frac{1}{x} \, dx \\
\text{b)} & \quad \int_0^1 \frac{1}{x} \, dx \\
\text{c)} & \quad \int_{-\infty}^\infty e^{-x^2} \, dx \\
\text{d)} & \quad \int_0^\infty \frac{1}{3x-1} \, dx
\end{align*}
\]

Explain why each of these integrals is improper, listing all the issues of types (I.) and/or (II.) that each integral has.

a) Type I only \(b/c \) upper limit is \(\infty \) and function defined on \([1, \infty)\)
b) Type II only; undefined at \(x=0 \), \(0 \in [0, 1] \)
c) Type I only \(b/c \) \(\frac{\infty}{0} \), \(b=\infty \) and function defined on \((-\infty, \infty)\)
d) Type I & Type II \(b/c \) \(b=\infty \) & function undef. at \(x=\frac{1}{3}, \frac{1}{3} \in [0, \infty) \)

Evaluating improper integrals with \(\infty \) as the upper bound

If \(f(x) \) is "nice" (defined and continuous, for example—no asymptotes!) on the interval \([a, \infty)\), then to evaluate \(\int_a^\infty f(x) \, dx \) we can follow a simple three-step process:

1. Rewrite the improper integral as a limit of proper integrals:

\[
\int_a^\infty f(x) \, dx = \lim_{b \to \infty} \left[\int_a^b f(x) \, dx \right]
\]

2. Evaluate the proper integrals inside the limit.

3. Evaluate the limit as \(b \to \infty \).
Note that you may prefer to evaluate the proper integral first (reversing steps 1 and 2)—Dr. Solis uses this approach in his notes from Lecture 2. You are always welcome to use the method that you find easiest or most natural/comfortable.

Example. Evaluate \(\int_5^\infty \frac{1}{x^2} \, dx \).

1. Rewrite as limit: \(\int_5^\infty \frac{1}{x^2} \, dx = \lim_{b \to \infty} \int_5^b \frac{1}{x^2} \, dx \).

2. Evaluate the proper integrals (and simplify):

\[
\lim_{b \to \infty} \int_5^b \frac{1}{x^2} \, dx = \lim_{b \to \infty} \left[-\frac{1}{x} \right]_5^b = \lim_{b \to \infty} \left[\frac{1}{b} - \frac{1}{5} \right] = \lim_{b \to \infty} \left[\frac{1}{5} - \frac{1}{b} \right]
\]

3. Evaluate the limit: \(\lim_{b \to \infty} \left[\frac{1}{5} - \frac{1}{b} \right] = \frac{1}{5} - 0 = \frac{1}{5} \).

Convergence versus divergence

When an improper integral is equal to a (finite) numerical value, we say that it converges. Otherwise, we say that it diverges.

Examples:

- \(\int_1^\infty \frac{1}{x} \, dx = \lim_{b \to \infty} \ln(b) = +\infty \) so this integral diverges (to positive infinity).

- \(\int_5^\infty \frac{1}{x^2} \, dx = 1/5 \) so this integral converges (to 1/5).

- \(\int_0^\infty \cos x \, dx = \lim_{b \to \infty} [\sin x] = \text{DNE} \) so this integral diverges.

- What about \(\int_0^\infty e^{-x} \, dx? \int_1^\infty \frac{1}{x^2} \, dx? \)

\[
\int_0^\infty e^{-x} \, dx = \lim_{b \to \infty} \int_0^b e^{-x} \, dx = \lim_{b \to \infty} [-e^{-x}]_0^b = \lim_{b \to \infty} (1 - e^{-b}) = 1
\]

This integral converges.

\[
\int_1^\infty \frac{1}{x^2} \, dx = \lim_{b \to \infty} \int_1^b \frac{1}{x^2} \, dx = \lim_{b \to \infty} \left[-\frac{1}{2x^2} \right]_0^b = \lim_{b \to \infty} \left(\frac{1}{2} - \frac{1}{2b^2} \right) = \frac{1}{2}
\]

This integral converges.
The asymptotic relation \asymp

If $f(x)$ and $g(x)$ are reasonably “nice” functions on $[a, \infty)$, then we say that $f(x)$ and $g(x)$ are asymptotic to each other (as $x \to \infty$) if the limit

$$\lim_{x \to \infty} \left| \frac{f(x)}{g(x)} \right|$$

exists and is equal to a positive, finite constant c (that is, $0 < c < \infty$). In symbols, we write $f(x) \asymp g(x)$.

Intuitively, $f(x) \asymp g(x)$ means that there is some constant c (the same c that pops out of the limit) such that $f(x) \approx c \cdot g(x)$ for large values of x.

Examples:

- $x^2 \asymp 4x^2 + 1$, since $\lim_{x \to \infty} \left| \frac{x^2}{4x^2 + 1} \right| = \frac{1}{4}$.

 *The intuition is that $x^2 \approx \frac{1}{4}(4x^2 + 1)$ for large values of x. Do you agree? What are the values of the left and right hand sides of the \approx when $x = 100$?

 \[100^2 = 10,000\]
 \[\frac{1}{4}(4 \cdot 100^2 + 1) = 10,000.25\] pretty close!

- $\frac{1}{x} \asymp \frac{x}{3x^2 - 1}$ since $\lim_{x \to \infty} \left| \frac{1/x}{x/(3x^2 - 1)} \right| = \lim_{x \to \infty} \left| \frac{3x^2 - 1}{x^2} \right| = 3$

- $e^{-x} \not\asymp 3^{-x}$, because $\lim_{x \to \infty} \left| \frac{e^{-x}}{3^{-x}} \right| = \lim_{x \to \infty} \left(\frac{3}{e} \right)^x = \infty$.

Application in Math 21

The reason we care about the \asymp relation in Math 21 is that it can sometimes allows us to quickly determine whether an improper integral converges or diverges, without actually evaluating it. Instead, we can compare a complicated integrand to a simpler one using \asymp, and then determine whether the simpler integral converges or diverges!

Limit comparison for integrals. If $f(x)$ and $g(x)$ are defined and continuous on the interval $[a, \infty)$ and $f(x) \asymp g(x)$ (as $x \to \infty$), then the improper integrals

$$\int_a^\infty f(x) \, dx \quad \text{and} \quad \int_a^\infty g(x) \, dx$$

either both converge or both diverge.
Limit comparison practice

Below, use limit comparison for integrals to determine whether the improper integral converges or diverges. You should state what ≈ relation you are using to establish this!

a. Does \(\int_1^\infty \frac{1}{3x-1} \, dx \) converge or diverge?

\[
guess \frac{1}{3x-1} \lessapprox \frac{1}{x} \quad \text{check: } \lim_{x \to \infty} \left| \frac{\frac{1}{3x-1}}{\frac{1}{x}} \right| = \lim_{x \to \infty} \left| \frac{x}{3x-1} \right| = \lim_{x \to \infty} \left| \frac{\frac{1}{3x-1}}{x} \right| = \frac{1}{3} \]

\(\frac{1}{3} \) is a positive constant so \(\frac{1}{3x-1} \lessapprox \frac{1}{x} \)

\(\int_1^\infty \frac{1}{x} \, dx \) Diverges (from examples page 2) so \(\int_1^\infty \frac{1}{3x-1} \, dx \) Diverges

b. Does \(\int_1^\infty \frac{1}{4x^2 + 1} \, dx \) converge or diverge?

\[
guess \frac{1}{4x^2 + 1} \lessapprox \frac{1}{4x^2} \quad \text{check: } \lim_{x \to \infty} \left| \frac{\frac{1}{4x^2 + 1}}{\frac{1}{4x^2}} \right| = \lim_{x \to \infty} \left| \frac{4x^2}{4x^2 + 1} \right| = \lim_{x \to \infty} \left| \frac{\frac{1}{4x^2 + 1}}{\frac{1}{4x^2}} \right| = 1 \]

\(\frac{1}{4x^2 + 1} \lessapprox \frac{1}{4x^2} \)

\(\int_1^\infty \frac{1}{4x^2} \, dx = \frac{1}{4} \int_1^\infty \frac{1}{x^2} \, dx \) converges (from examples page 2)

so \(\int_1^\infty \frac{1}{4x^2 + 1} \, dx \) converges

c. Does \(\int_0^\infty \frac{1}{e^x \sqrt{x^2 + x}} \, dx \) converge or diverge?

\[
guess \frac{\sqrt{x^2 + x}}{e^x} \lessapprox \frac{1}{e^x} \quad \text{check: } \lim_{x \to \infty} \left| \frac{\frac{\sqrt{x^2 + x}}{e^x}}{\frac{1}{e^x}} \right| = \lim_{x \to \infty} \left| \frac{\sqrt{x^2 + x}}{x^2 + x} \right| = \lim_{x \to \infty} \left| \frac{\frac{\sqrt{x^2 + x}}{x^2 + x}}{\frac{1}{e^x}} \right| = \frac{1}{e} \]

so since \(\int_0^\infty \frac{1}{e^x} \, dx \) converges (work on page 2)

we conclude \(\int_0^\infty \frac{\sqrt{x^2 + x}}{e^x} \, dx \) converges

so \(\int_0^\infty \frac{1}{4x^2 + 1} \, dx \) converges or diverge? (Compare with c.)

Integral converges. See explanation on Piazza.