1 Lecture 6

A little review. Improper integrals

\[\text{type I} \quad \int_a^\infty f(x) \, dx \quad \text{no undefined values} \]
\[\int_{-\infty}^{b} f(x) \, dx \]
\[\int_{-\infty}^{\infty} f(x) \, dx \]

\[\text{type II} \quad \int_a^b f(x) \, dx \quad f(x) \text{ undefined somewhere in } [a, b] \]

\[\text{combo} \quad \int_a^\infty f(x) \, dx \quad f(x) \text{ has some undefined values} \]

- \[\int_1^\infty \frac{1}{x^p} = \frac{1}{p-1} \text{ for } p > 1 \text{ and diverges for } p < 1 \]
- \[\int_0^\infty r^{-r} \, dx = \frac{1}{\ln(r)} \text{ for } r > 1 \]
- (new, for type II): \[\int_0^1 \frac{1}{x^p} \, dx = \frac{1}{1-p} \text{ for } p < 1 \text{ and diverges for } p \geq 1 \]

Example 1. Does \(\int_{-\infty}^{-3} \frac{1}{9x^2+4} \, dx \) converge?

Type I. Probably compare with \(\frac{1}{x^2} \) but this has an issue at \(x=0 \). So break up the integral

\[\int_{-\infty}^{-3} \frac{1}{9x^2+4} \, dx = \int_{-\infty}^{-3} \frac{1}{9x^2+4} \, dx + \int_{1}^\infty \frac{1}{9x^2+4} \, dx \]

Draw a picture...

Convergence only depends on the “tail” so I can focus only on \(\int_{1}^\infty \frac{1}{9x^2+4} \, dx \) and now I don’t need to worry that \(\frac{1}{x^2} \) isn’t defined at \(x=0 \).

Now use asymptotic algebra:

\(9x^2 + 4 \gg 9x^2 \gg x^2 \) so \(\frac{1}{9x^2+4} \sim \frac{1}{x^2} \) and \(\int_{1}^\infty \frac{1}{x^2} \, dx \) converges so \(\int_{-\infty}^{-3} \frac{1}{9x^2+4} \, dx \) converges.

Example 2. Does \(\int_0^3 \frac{1}{x-1} \, dx \) converge?

Draw a picture

Only problem value is at \(x=1 \) so we split it up

\[\int_0^3 \frac{1}{x-1} \, dx = \int_0^1 \frac{1}{x-1} \, dx + \int_1^3 \frac{1}{x-1} \, dx \]
\[= \lim_{b \to 1} \int_0^b \frac{1}{x-1} \, dx + \lim_{a \to 1} \int_a^3 \frac{1}{x-1} \, dx \]
\[= \lim_{b \to 1} \ln |x-1| \big|_0^b + \lim_{a \to 1} \ln |x-1| \big|_a^3 \]
\[= \lim_{b \to 1} \ln |b-1| + \lim_{a \to 1} (\ln(2) - \ln|a-1|) \]
neither \lim is finite so the whole thing diverges.

Notice if we hadn’t expressed this as a limit we would have gotten the wrong answer.

(picture of generic function that has issues)

The general strategy: note each kind of infinity and break up into integrals into “simple” improper integrals.

Example 3. \(\int_{-5}^{3} \frac{1}{x^{3/5}} \, dx \). Only issue is at \(x=0 \)

\[
\int_{-5}^{3} \frac{1}{x^{3/5}} \, dx = \int_{-5}^{0} \frac{1}{x^{3/5}} \, dx + \int_{0}^{3} \frac{1}{x^{3/5}} \, dx
\]

\[
= \lim_{b \to 0^-} \int_{-5}^{b} \frac{1}{x^{3/5}} \, dx + \lim_{a \to 0^+} \int_{a}^{3} \frac{1}{x^{3/5}} \, dx
\]

\[
= \lim_{b \to 0^-} \frac{5}{2} \left(b^{2/5} - (-5)^{2/5} \right) + \lim_{a \to 0^+} \frac{5}{2} \left(3^{2/5} - a^{2/5} \right)
\]

\[
= -(25)^{1/5} + 9^{1/5} < 0
\]

Remark 4. We spent some type talking about asymptotic relations for type I integrals. We will NOT do this for type II integrals. We don’t have to worry about asymptotic comparisons for type II integrals.

Remark 5. If we break up an integral into pieces \(\int f \, dx = A + B + C \) and if at least one pieces diverges then we say the whole thing diverges.