Solutions to homework 3

Book problems - section 9.1

Exercise 22 Note that because \((-1)^n\) is bounded, \(\lim_{n \to \infty} \frac{(-1)^n}{n} = 0\). Thus,
\[
\lim_{n \to \infty} \frac{2n + (-1)^n5}{4n - (-1)^n3} = \lim_{n \to \infty} \frac{2 + \frac{(-1)^n}{n} \cdot 5}{4 - \frac{(-1)^n}{n} \cdot 3} = \frac{2 + 0}{4 - 0} = \frac{1}{2}.
\]

Exercise 26

(a) \(\lim_{n \to \infty} n(n + 1) - 1 = +\infty\), so this matches with (II).

(b) \(\lim_{n \to \infty} \frac{1}{n+1} = 0\) and \(\frac{1}{n+1} > 0\) for every \(n\), so this matches with (III).

(c) \(\lim_{n \to \infty} 1 - n^2 = -\infty\), so this matches with (I).

(d) Since \(\lim \frac{1}{n} = 0\) and \(\cos(x)\) is continuous, \(\lim_{n \to \infty} \cos(\frac{1}{n}) = \cos(0) = 1\), so this matches with (IV).

(e) Since \(\sin n\) is bounded, \(\lim_{n \to \infty} \frac{\sin n}{n} = 0\). Moreover, as \(n\) gets bigger, \(\sin n\) goes through both positive and negative values, hence so does \(\frac{\sin n}{n}\). So this matches with (V).

Book problems - section 9.2

Exercise 24 The formula for the sequence is \(a_n = 10 \cdot (-\frac{2}{3})^n\). If you wonder where this comes from, the ratio \(-\frac{2}{3}\) can be found by taking the ratio of any two consecutive terms: \(\frac{\frac{540}{810}}{-\frac{360}{540}} = \cdots = -\frac{2}{3}\). The base \(-810\) is just the value of the first term. So,
\[
\sum_{n=0}^{\infty} -810 \left(-\frac{2}{3}\right)^n = -810 \cdot \frac{1}{1 - \left(-\frac{2}{3}\right)} = -810 \cdot \frac{3}{5} = -486.
\]

Exercise 26 The formula for the sequence is \(a_n = \left(\frac{z}{2}\right)^n\). The partial sum is
\[
\sum_{n=0}^{M} \left(\frac{z}{2}\right)^n = \frac{1 - \left(\frac{z}{2}\right)^{M+1}}{1 - \frac{z}{2}}.
\]
Thus, if \(-2 < z < 2\) then \(|\frac{z}{2}| < 1\), so the series converges to \(\frac{1}{1-\frac{z}{2}}\). Otherwise, the series diverges.

Exercise 46

(a) \(h_n = 10 \cdot \left(\frac{3}{4}\right)^n\).
(b) Note that the ball has to travel downward 10 feet before it hits the ground for the first time, and that the distance traveled between the \(k \)th and \((k + 1)\)th time is twice the height \(h_k \), since the ball has to move upward and then forward. Thus, the total distance the ball has traveled when it hits the floor for the \(n \)th time is:

- For \(n = 1 \) : 10 feet.
- For \(n = 2 \) : \(10 + 2 \cdot h_1 = 10 + 2 \cdot 7.5 = 25 \) feet.
- For \(n = 3 \) : \(10 + 2 \cdot h_1 + 2h_2 = 10 + 2 \cdot 7.5 + 2 \cdot 5.625 = 36.25 \) feet.
- For general \(n \geq 2 \):

\[
10 + 2h_1 + 2h_2 + \cdots + 2h_{n-1} = 10 + \sum_{k=1}^{n-1} 2 \cdot 10 \cdot \left(\frac{3}{4} \right)^k = 10 + 20 \sum_{k=1}^{n-1} \left(\frac{3}{4} \right)^k
\]

\[
= 10 + 20 \cdot \frac{3^{n-2}}{4} \left(\frac{3}{4} \right)^k = 10 + 20 \cdot \frac{3}{4} \cdot \frac{1 - \left(\frac{3}{4} \right)^{n-1}}{1 - \frac{3}{4}}
\]

\[
= 10 + 60 \left(1 - \left(\frac{3}{4} \right)^{n-1} \right).
\]

In particular, for \(n = 4 \), the answer is 44.6875 feet.

(c) As discussed above, the answer is \(10 + 60 \left(1 - \left(\frac{3}{4} \right)^{n-1} \right) \).

Exercise 47

(a) The formula for the height of the ball after \(t \) seconds is \(h - \frac{1}{2}gt^2 \). When the ball hits the ground, this expression must be 0, so \(t = \sqrt{\frac{2h}{g}} = \sqrt{\frac{h}{16}} = \frac{1}{4} \sqrt{h} \).

(b) In exercise 46, the ball takes \(\frac{1}{4} \sqrt{10} \) seconds to hit the ground for the first time. Then, after hitting the ground for the \(n \)th time, the ball hits the height \(h_n = 10 \left(\frac{3}{4} \right)^n \) feet. The time it takes to bounce from the ground back to \(h_n \) feet height is the same as the time it takes to drop from that height to the ground, which is \(\frac{1}{4} \sqrt{h_n} \) seconds. Thus, the time between the \(n \)th and \((n + 1)\)th hit is \(\frac{1}{2} \sqrt{h_n} \) seconds. Hence the total travel time is

\[
\frac{1}{4} \sqrt{10} + \sum_{n=1}^{\infty} \frac{1}{2} \sqrt{h_n} = \frac{1}{4} \sqrt{10} + \sum_{n=1}^{\infty} \frac{1}{2} \sqrt{10} \left(\frac{3}{4} \right)^n
\]

\[
= \frac{1}{4} \sqrt{10} + \frac{1}{2} \sqrt{10} \cdot \frac{3}{4} \sum_{n=0}^{\infty} \left(\frac{3}{4} \right)^n = \frac{1}{4} \sqrt{10} + \frac{1}{2} \sqrt{10} \cdot \frac{3}{4} \cdot \frac{1}{1 - \frac{3}{4}}
\]

Book problems - section 9.3

Exercise 4 Set \(f(x) = \frac{1}{(x+2)^2} \). This function is continuous, positive, decreasing as \(x \) goes from 1 to \(\infty \). Thus, since the integral

\[
\int_1^\infty \frac{1}{(x+2)^2} \, dx = \lim_{b \to \infty} \left[\frac{1}{x+2} \right]_1^b = \frac{1}{3}
\]

converges, the series \(\sum_{n=1}^{\infty} \frac{1}{(n+2)^2} \) also converge.
Exercise 6 Set \(f(x) = e^{-x} \). This function is continuous, positive, decreasing as \(x \) goes from 1 to \(\infty \). Thus, since the integral
\[
\int_1^\infty e^{-x} \, dx = \lim_{b \to \infty} -e^{-x}|_1^b = e^{-1}
\]
converges, the series \(\sum_{n=1}^{\infty} e^{-n} \) also converge.

Exercise 10 The corresponding function is \(f(x) = x^2 \). This function is not decreasing as \(x \) goes from 1 to \(\infty \), so the integral test does not apply.

Exercise 12 The corresponding function is \(f(x) = e^{-x} \sin x \). This function does not stay positive as \(x \) goes from 1 to \(\infty \), so the integral test does not apply. (It is also not decreasing, since its value switches back and forth between positive and negative).

Exercise 14 Set \(f(x) = \frac{4}{2x+1} \). This function is continuous, positive, decreasing as \(x \) goes from 0 to \(\infty \). Thus, since the integral
\[
\int_0^\infty \frac{4}{2x+1} \, dx = \lim_{b \to \infty} 2 \ln(2x+1)|_1^b = \infty
\]
diverges, the series \(\sum_{n=1}^{\infty} \frac{1}{(n+2)^2} \) also diverge.

Exercise 16 Set \(f(x) = \frac{2x}{1+x^4} \). This function is continuous, positive, decreasing as \(x \) goes from 1 to \(\infty \). (Continuity and positivity is clear; the fact that \(f(x) \) decreases can be checked by looking at the derivative
\[
f'(x) = \frac{2(1+x^4) - 4x^3 \cdot 2x}{(1+x^4)^2} = \frac{2 - 6x^3}{(1+x^4)^2},
\]
which is negative for \(x \geq 1 \)).

Now we compute the integral \(\int_1^\infty \frac{2x}{1+x^4} \, dx \). Let \(u = x^2 \), then \(du = 2xdx \). Thus,
\[
\int_1^\infty \frac{2x}{1+x^4} \, dx = \int_1^\infty \frac{1}{1+u^2} \, du = \lim_{b \to \infty} \arctan(u)|_1^b = \frac{\pi}{2} - \arctan(1)
\]
is convergent. Therefore, by the integral test, the series \(\sum_{n=1}^{\infty} \frac{2n}{1+n^4} \) converge. Since convergence behaviour does not depend on where the index starts, the series \(\sum_{n=0}^{\infty} \frac{2n}{1+n^4} \) converge as well.

Exercise 18 We can use the divergence test here. Since
\[
\lim_{n \to \infty} \frac{2n}{\sqrt{4+n^2}} = \lim_{n \to \infty} \frac{2}{\sqrt{\frac{4}{n^2} + 1}} = \frac{2}{\sqrt{0+1}} = 2 \neq 0,
\]
the series diverge.

Exercise 20 Set \(f(x) = \frac{4}{(2x+1)^3} \). This function is continuous, positive, decreasing as \(x \) goes from 1 to \(\infty \). Thus, since the integral
\[
\int_1^\infty \frac{4}{(2x+1)^3} \, dx = \lim_{b \to \infty} -(2x+1)^{-2}|_1^b = \frac{1}{9}
\]
converges, the series \(\sum_{n=1}^{\infty} \frac{4}{(2n+1)^3} \) also converge.
Exercise 22 Set $f(x) = \frac{2}{1+4x^2}$. This function is continuous, positive, decreasing as x goes from 0 to ∞. Thus, since the integral

$$\int_0^\infty \frac{2}{1+4x^2} \, dx = \lim_{b \to \infty} \arctan(2x)|_0^b = \frac{\pi}{2}$$

converges, the series $\sum_{n=0}^{\infty} \frac{2}{1+4n^2}$ also converge.

Exercise 28 Set $f(x) = \frac{\ln x}{x}$. This function is continuous, positive, decreasing as x goes from 3 to ∞. (Continuity and positivity is clear; the fact that $f(x)$ decreases can be checked by looking at the derivative

$$f'(x) = \frac{1}{x} - \frac{\ln x}{x^2} = \frac{1 - \ln x}{x^2},$$

which is negative for $x \geq 3$). The integral $\int_3^\infty \frac{\ln x}{x} \, dx$ diverges, because $\frac{\ln x}{x} > \frac{1}{x}$ and $\int_3^\infty \frac{1}{x} \, dx$ diverges. Thus, by the integral test, the series $\sum_{n=3}^{\infty} \frac{\ln n}{n}$ diverge. Since convergence behaviour does not depend on where the index starts, the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ diverge as well.

Supplemental problem G

(a)

$$I_0 = \int_0^{\frac{\pi}{2}} (\cos \theta)^0 \, d\theta = \int_0^{\frac{\pi}{2}} 1 \, d\theta = \frac{\pi}{2}; \quad I_1 = \int_0^{\frac{\pi}{2}} (\cos \theta)^1 \, d\theta = \int_0^{\frac{\pi}{2}} \cos \theta \, d\theta = \sin \theta|_0^{\frac{\pi}{2}} = 1.$$

(b) By the integration table,

$$\int (\cos \theta)^k \, d\theta = \frac{1}{k} (\cos \theta)^{k-1} \sin \theta + \frac{k-1}{k} \int (\cos \theta)^{k-2} \, d\theta.$$

Thus,

$$I_k = \int_0^{\frac{\pi}{2}} (\cos \theta)^k \, d\theta = \frac{1}{k} (\cos \theta)^{k-1} \sin \theta|_0^{\frac{\pi}{2}} + \frac{k-1}{k} \int_0^{\frac{\pi}{2}} (\cos \theta)^{k-2} \, d\theta.$$

Note that when $k \geq 2$, the value of $(\cos \theta)^{k-1} \sin \theta$ is 0 both when $\theta = 0$ and $\theta = \frac{\pi}{2}$. Thus,

$$I_k = \frac{k-1}{k} \int_0^{\frac{\pi}{2}} (\cos \theta)^{k-2} \, d\theta = \frac{k-1}{k} I_{k-2}.$$

(c)

$$I_0 = \frac{\pi}{2}, \quad I_2 = \frac{2}{2} I_0 = \frac{\pi}{4}, \quad I_1 = 1, \quad I_4 = \frac{4}{4} I_2 = \frac{3\pi}{16}, \quad I_3 = \frac{3}{3} I_1 = \frac{2}{3}, \quad I_5 = \frac{5}{5} I_3 = \frac{8}{15}, \quad I_6 = \frac{6}{6} I_4 = \frac{5\pi}{32}, \quad I_7 = \frac{7}{7} I_5 = \frac{16}{35}.$$

(d) Decreasing.

(e)

$$I_0 \cdot I_1 = \frac{\pi}{2}, \quad I_2 \cdot I_3 = \frac{\pi}{6}, \quad I_4 \cdot I_5 = \frac{\pi}{10}, \quad I_6 \cdot I_7 = \frac{\pi}{14}.$$

Generally,

$$I_{2n} \cdot I_{2n+1} = \frac{\pi}{2(2n+1)}.$$
Supplemental problem H

(a) Note that the rectangles in the figure below have area $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$ respectively, so H_n is the total area of these n rectangles. Meanwhile, $\ln(n + 1) = \int_1^{n+1} \frac{1}{x} \, dx$ is the area under the graph $y = \frac{1}{x}$ from 1 to $n + 1$. Since the function $\frac{1}{x}$ is decreasing, the graph is inside the rectangles, as shown in the figure. Thus, $H_n \geq \ln(n + 1)$. Since $\ln(n + 1) > \ln n$ for every n, we can conclude that $H_n > \ln n$. Thus, $g_n = H_n - \ln n$ is positive.

![Figure 1: An illustration for the case $n = 5$, showing why $H_5 > \int_1^6 \frac{1}{x} \, dx$.](image)

(b)

$$g_n - g_{n-1} = (H_n - \ln n) - (H_{n-1} - \ln(n - 1))$$

$$= (H_n - H_{n-1}) + \ln(n - 1) - \ln n$$

$$= \left(\sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n-1} \frac{1}{k}\right) + \ln \left(\frac{n-1}{n}\right)$$

$$= \frac{1}{n} + \ln \left(1 - \frac{1}{n}\right).$$

(c) Here are the graphs. Clearly $\ln(1 - x)$ is below $-x$.
This inequality can also be seen without the graphs: In a previous homework, you showed that $e^x \geq 1 + x$ for every number x. Plugging in $\ln(1 - x)$ gives $e^{\ln(1-x)} \geq 1 + \ln(1 - x)$, which simplifies to $1 - x \geq 1 + \ln(1 - x)$, so $-x \geq \ln(1 - x)$.

(d) We just showed that $\ln(1 - x) < -x$ for every number x. Plugging in $\frac{1}{n}$ gives $\ln(1 - \frac{1}{n}) < -\frac{1}{n}$. Thus, by part (b), $g_n - g_{n-1} = \frac{1}{n} + \ln(1 - \frac{1}{n}) < \frac{1}{n} - \frac{1}{n} = 0$. Thus, $g_n < g_{n-1}$, so the sequence g_n is decreasing.

(e) We just showed that the sequence g_n is decreasing. By part (a), this sequence is also positive, so it is bounded below by 0. Any decreasing sequence that is bounded below is convergent.