HOMEWORK 4 SOLUTIONS

BEN LIM

Section 9.4 problem 8
Since $3^n + 1 > 3^n$, it is clear we have the inequality

$$\sum_{n \geq 1} \frac{1}{3^n + 1} \leq \sum_{n \geq 1} \frac{1}{3^n}.$$

The sum on the right converges because it is just a geometric series with $r = 1/3$. By comparison, the sum on the left converges.

Section 9.4 problem 12
Since $\sin^2 n \leq 1$, we have

$$\sum_{n=1}^{\infty} \frac{n \sin^2 n}{n^3 + 1} \leq \sum_{n=1}^{\infty} \frac{n}{n^3 + 1} \leq \sum_{n=1}^{\infty} \frac{1}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

The rightmost series converges because it is a p-series with $p = 2$. Therefore by comparison the original series converges.

Section 9.4 problem 14
Define

$$a_n := \frac{n}{2^n}.$$

We have

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{n+1}{n} \cdot \frac{2^n}{n^{n+1}} = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = \frac{1}{2}.$$

Therefore by the ratio test, $\sum_{n=1}^{\infty} a_n$ converges.

Section 9.4 problem 16 Define $a_n = \frac{(n!)^2}{(2n)!}$. We have

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)!^2}{(2n+2)!} \cdot \frac{(2n)!}{(n!)^2} = \lim_{n \to \infty} \frac{(n+1)!}{(2n+2)(2n+1)!} \cdot \frac{(2n)!}{(n!)^2} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{4n^2 + 6n + 1} = \frac{1}{4}.$$

Therefore by the ratio test, $\sum_{n=1}^{\infty} a_n$ converges.

Section 9.4 problem 18
Define

$$a_n := \frac{1}{r^n n!}.$$
We have
\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{1}{r^{n+1}(n+1)!} \cdot \frac{r^n n!}{1} = \lim_{n \to \infty} \frac{1}{r} \cdot \frac{1}{n+1} = 0.
\]

Therefore by the ratio test, \(\sum_{n=1}^{\infty} a_n \) converges.

Section 9.4 problem 20

Define
\[
a_n := \frac{2^n}{n^3 + 1}.
\]

We have
\[
\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)^3 + 1} \cdot \frac{n^3 + 1}{2^n} = \lim_{n \to \infty} 2 \cdot \frac{(n+1)^3 + 1}{n^3 + 1} = \lim_{n \to \infty} 2 \cdot \frac{(1 + \frac{1}{n})^3 + \frac{1}{n^3}}{1 + \frac{1}{n^3}} = 2.
\]

Therefore by the ratio test, \(\sum_{n=1}^{\infty} a_n \) diverges.

Section 9.4 problem 38

Define
\[
a_n = \frac{5n + 1}{3n^2},
b_n := \frac{1}{n}.
\]

We will show that \(a_n \asymp b_n \) and since the series for \(b_n \) diverges, the series for \(a_n \) will diverge too by limit comparison. We have
\[
\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{(5n + 1)n}{3n^2} = \lim_{n \to \infty} \frac{5 + \frac{1}{n}}{3} = \frac{5}{3}.
\]

This shows that \(a_n \asymp b_n \) as claimed.

Section 9.4 problem 40

Define
\[
a_n = 1 - \cos \frac{1}{n},
b_n := \frac{1}{n^2}.
\]

We will show that \(a_n \asymp b_n \) and since the series for \(b_n \) converges, the series for \(a_n \) will converge too by limit comparison. We have
This shows that \(a_n \asymp b_n \) as claimed.

Section 9.4 problem 42

Define

\[
a_n := \frac{n + 1}{n^2 + 2}.
\]

How do we know which sequence to compare \(a_n \) to? Observe that \(a_n \) is the ratio of two polynomials in \(n \). Therefore, as we have discussed in class and section the sequence to compare \(a_n \) with is just \(n^k \), where

\[
k = \text{(highest power of } n \text{ in numerator - highest power of } n \text{ in denominator)} = -1.
\]

Therefore, we should compare \(a_n \) with

\[
b_n := \frac{1}{n}.
\]

We have

\[
limit_{n \to \infty} \frac{a_n}{b_n} = limit_{n \to \infty} \frac{(n + 1)n}{n^2 + 2}
\]

\[
= limit_{n \to \infty} \frac{1 + \frac{1}{n}}{1 + \frac{2}{n^2}}
\]

\[
= 1.
\]

Therefore \(a_n \asymp b_n \) and since the series for \(b_n \) diverges, by limit comparison so does the one for \(a_n \).

Section 9.4 problem 44

Define

\[
a_n := \frac{2^n}{3^n - 1}.
\]

When \(n \) is very very big, the 1 in the denominator is inconsequential and this gives us an indication that we should compare \(a_n \) with

\[
b_n := \frac{2^n}{3^n}.
\]

We have

\[
limit_{n \to \infty} \frac{a_n}{b_n} = limit_{n \to \infty} \frac{2^n}{3^n - 1} \cdot \frac{3^n}{2^n}
\]

\[
= limit_{n \to \infty} \frac{3^n}{3^n - 1}
\]

\[
= limit_{n \to \infty} \frac{1}{1 - \frac{1}{3^n}}
\]

\[
= 1.
\]
Therefore \(a_n \asymp b_n\) and since the series for \(b_n\) converges, by limit comparison so does the one for \(a_n\).

Problem I

(a) Using the relation \(F_{n+1} = F_n + F_{n-1}\), we get \(\frac{F_{n+1}}{F_n} = \frac{F_n + F_{n-1}}{F_n} = 1 + \frac{F_{n-1}}{F_n}\). Therefore
\[
\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = 1 + \lim_{n \to \infty} \frac{F_{n-1}}{F_n}.
\]

However, notice that
\[
\lim_{n \to \infty} \frac{F_{n-1}}{F_n} = \lim_{n \to \infty} \frac{F_n}{F_{n+1}}
\]
and therefore writing
\[
\varphi := \lim_{n \to \infty} \frac{F_{n+1}}{F_n},
\]
we get from (*) the relation
\[
\varphi = 1 + \frac{1}{\varphi}
\]
and therefore
\[
\varphi^2 - \varphi - 1 = 0.
\]
By the quadratic formula,
\[
\varphi = \frac{1 + \sqrt{5}}{2}
\]
where the negative solution is ignored since \(\varphi\) is positive.

(b) Using a calculator we get
\[
F_{20} = \left\lfloor \frac{\varphi^{20}}{\sqrt{5}} \right\rfloor = 6765.
\]

(c) The value of \(\varphi\) is approximately 1.618 which is less than 2. Therefore, we must have \(\varphi^n \prec 2^n\) and therefore from part (b),
\[
F_n \prec 2^n.
\]
It follows that \(\lim_{n \to \infty} \frac{F_n}{2^n} = 0\). Therefore
\[
\lim_{n \to \infty} \left(\frac{\text{robots}}{\text{robots} + \text{rabits}} \right) = \lim_{n \to \infty} \frac{1}{1 + \frac{\text{rabits}}{\text{robots}}}
\]
\[
= \lim_{n \to \infty} \frac{1}{1 + \frac{F_n}{2^n}}
\]
\[
= 1.
\]

(d) From part (b) we know that \(F_n \prec \varphi^n\) and therefore \(1/F_n \prec (1/\varphi)^n\). Since \(1/\varphi < 1\), it follows that
\[
\sum_{n=1}^{\infty} \left(\frac{1}{\varphi} \right)^n < \infty
\]
and therefore by limit comparison the sum of the reciprocals of the Fibonacci numbers converges.

Problem J

(a) We have
\[
\log(n!) = \log(n(n-1) \ldots 2 \cdot 1) = \log n + \log(n-1) + \ldots + \log 2 + \log 1 = \sum_{k=1}^{n} \log(k).
\]
(b) See scan.

(c) The indefinite integral of \(\ln x \) is \(x \ln x - x + C \), for some constant \(C \). Therefore for any number \(a > 1 \),
\[
\int_1^a \ln x \, dx = [x \ln x - x]_1^a = a \ln a - a + 1.
\]
The inequality in (b) therefore translates to
\[
n \ln n - n + 1 \leq \sum_{k=1}^n \log(k) \leq (n + 1) \log(n + 1) - n.
\]
By part (a) the middle term is equal to \(\log(n!) \) and therefore we get the inequality
\[
n \ln n - n + 1 \leq \log(n!) \leq (n + 1) \log(n + 1) - n
\]
as desired.

(d) First note that it is convenient to write the inequality in part (c) as
\[
\ln(n^n) - n + 1 \leq \log(n!) \leq \log((n + 1)^{n+1}) - n
\]
Taking \(e \) to the power of this rearranged inequality, we get that
\[
e^{\ln n^n - n + 1} \leq n! \leq e^{\log(n+1)^{n+1} - n}.
\]
However,
\[
e^{\ln n^n - n + 1} = e^{\ln n^n} \cdot e^{-n} \cdot e = e \cdot \frac{n^n}{e^n}.
\]
Similarly,
\[
e^{\log(n+1)^{n+1} - n} = e^{\log(n+1)^{n+1}} \cdot e^{-n} = \frac{(n + 1)^{n+1}}{e^n}.
\]
Therefore the inequality in (**) now reads
\[
e \cdot \frac{n^n}{e^n} \leq n! \leq \frac{(n + 1)^{n+1}}{e^n}
\]
as desired.

(e) We have
\[
\frac{(n + 1)^{n+1}}{n^{n+1}} = \left(\frac{n + 1}{n} \right)^{n+1} = \left(1 + \frac{1}{n} \right)^n \left(1 + \frac{1}{n} \right).
\]
Therefore
\[
\lim_{n \to \infty} \left(\frac{(n + 1)^{n+1}}{n^{n+1}} \right) = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = e.
\]

(f) We will use Stirling’s approximation, namely that
\[
n! \asymp n^{n+1/2}e^{-n}
\]
. We get from this that
\[
(2n)! \asymp (2n)^{2n+1/2}e^{-2n}, \quad (n!)^2 \asymp \frac{n^{2n+1}}{e^{2n}}.
\]
Hence,

\[
\frac{(2n)!}{4^n(n!)^2} \approx \left(2n\right)^{2n+1/2}e^{-2n} \cdot \left(\frac{e^{2n}}{4^n \cdot n^{2n+1}}\right)
\]

\[
= \left(2n\right)^{2n+1/2} \frac{1}{4^n \cdot n^{2n+1}}
\]

\[
= \frac{2^{2n} \cdot (2n)^{2n} \cdot \sqrt{n}}{4^n \cdot n^{2n} \cdot n}
\]

\[
= \frac{\sqrt{2}}{\sqrt{n}}.
\]

The series \(\sum_{n=0}^{\infty} \frac{2}{\sqrt{n}}\) diverges by the \(p\)-series test with \(p = 1/2\) and therefore by limit comparison the series

\[
\frac{(2n)!}{4^n(n!)^2}
\]

diverges.
Problem J (b):

Consider the figure on the left.
It is clear that
(area of boxes) \leq \text{area under } y = \ln x
for 1 \leq x \leq 5.

However, the total area of the boxes is \ln 2 + \ln 3 + \ln 4,
while the area under \(y = \ln x \) for 1 \leq x \leq 5 is given by
\[
\int_1^5 \ln x \, dx.
\]

Therefore, it follows from the picture above that
\[
\ln 2 + \ln 3 + \ln 4 \leq \int_1^5 \ln x \, dx,
\]

or more succinctly
\[
\sum_{k=1}^{n} \ln (k) \leq \int_1^5 \ln x \, dx.
\]

Noting that \(\ln(1) = 0 \).
On the other hand, if we consider instead the figure

we see that

area under curve \(\leq \) sum of area of boxes.

The term on the left is \(\int_{1}^{4} \ln x \, dx \), and the term on the right is

\[
\ln 2 + \ln 3 + \ln 4 = \sum_{k=1}^{4} \ln(k)
\]

In summary, the figure on this page gives the inequality

\[
\sum_{k=1}^{4} \ln(k) \leq \int_{1}^{4} \ln x \, dx \leq \sum_{k=1}^{5} \ln(k)
\]

Combining \(\bigcirc \) and \(\bigotimes \) gives

\[
\int_{1}^{4} \ln x \, dx \leq \sum_{k=1}^{5} \ln(k) \leq \int_{1}^{5} \ln x \, dx.
\]
Therefore in general, it is easy to see for every \(n > 1 \) that the inequality

\[
\int_1^n \ln x \, dx \leq \sum_{k=1}^{n+1} \ln k \leq \int_1^{n+1} \ln x \, dx
\]

is true.