MATH 220: PROBLEM SET 4
DUE 9AM, FRIDAY, OCTOBER 26, 2018

Problem 1. (i) Find the general C? solution of the PDE

Uggy — Ugt — Oy = 0
by reducing it to a system of first order PDEs.
Show that if f, g € D'(R), and we define new distributions v, w € D’'(R?) as
in Problem 3 of Problem Set 2, i.e. formally v(z,t) = f(3z 4+ t), w(z,t) =
g(—2x + t), then v = v 4+ w solves the PDE in (1). (Hint: use the result

of Problem 3 of Problem Set 2, and factor our second order operator. This
should only take a few lines.)

(i)

Problem 2. Solve the wave equation on the line:

Ugy — Clgy = 0, ulz, 0) = ¢(z), ue(x,0) = (),

with
0, r < —1,
_ 142, —-1<z<0,
(z) = l—z, O0<z<l,
0, x> 1.
and
0, =< -1,
P(x)=< 2, —l<x<l,
0, =z>1.

Also describe in t > 0 where the solution vanishes, and where it is C°°, and compare
it with the general results discussed in lecture (Huygens’ principle and propagation
of singularities).

Problem 3. Consider the PDE

(1) ug — V- (*Vu) + qu = 0, u(x,0) = ¢(x), us(x,0) = (),

where ¢, ¢ > 0, depend on z only, and ¢ is bounded between positive constants, i.e.
for some c1,c3 > 0, ¢; < () < ¢ for all z € R™. Assume that u is C? throughout

this problem, and u is real-valued. (All calculations would go through if one wrote
|u¢|?, etc., in the complex valued case.)

(i) Fix 2o € R™ and Ry > 0, and for ¢t < %‘J, let

E(t) = / (ut2 + c(a:)2|Vu\2 + q(m)uQ) dx.
\x—aco\<R0—02t

Show that E is decreasing with ¢ (i.e. non-increasing). (Hint: to make sure
you don’t forget anything in the calculation, do it first on the line, when
n=1)

(ii) Suppose that supp ¢,supp ¢ C {|z| < R}, i.e. are 0 outside this ball. Show
that u(x,t) = 0if t > 0, || > R + cot, i.e. the wave indeed propagates at
speed < co.
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(iii) Show that there is at most one real-valued C? solution of (1).

Problem 4. Consider the wave equation on R™:
Ut — CzAu = fa ’LL(ZC, O) = ¢($)7 Ut(fﬂ, 0) = T/J(x),
and write x = (2, x,,) where 2’ = (21,...,2p_1)
(i) Show that if

f(z’,xn,t) = f(l?l, —ZZ?n,t), (25(1‘/, an) = ¢(£E,, —.In), 1/’(9C/a Jin) = 770(:6/7 _xﬂ)
for all x and t, i.e. if f, ¢, are all even functions of z,,, then u is an even
function of z, as well. (Hint: Consider w(z’, z,,t) — u(x’, —x,,t), show
that it solves the homogeneous wave equation with 0 initial conditions.)
(ii) Show that if
f(a:’,xn,t) = 7f(x,7 7‘Tn7t)7 d)(m/’ 7‘7771) = 7¢($/’ 71771)’ ¢($l7xn) = 7@[)(17/’ 717”)
for all x and t, i.e. if f, ¢, are all odd functions of z,, then u is an odd
function of x,, as well.
(iii) If w is continuous, and is an odd function of x,, show that u(z’,0,¢) =0
for all 2’ and t.
(iv) If u is a C' and is an even function of x,,, show that 9, u(z’,0,t) = 0 for
all 2’ and t.
These facts will enable us to solve the wave equation in the half space z,, > 0 with
Dirichlet or Neumann boundary conditions later in the course.

Problem 5. Use the maximum principle for Laplace’s equation on R™ to show the
following statement: Suppose that v € C?(R") and Au = 0. Suppose moreover
that u(x) — 0 at infinity uniformly in the following sense:

sup |u(z)] =0

|lz|>R
as R — oo. Then u(z) = 0 for all z € R®. (Hint: Apply the maximum principle
shown in class for the ball @ = {z : |z| < R} and for both v and —u.)

Use this to show that the solution of Laplace’s equation on R™:

Au= T,

with f given, is unique in the class of functions u such that u € C?(R") and
u(x) — 0 at infinity uniformly.



