Problem 1.
(i) On \mathbb{R}^3, find the Fourier transform of the function $g(x) = |x|^{-1}$. (Hint: to do this efficiently, consider $g(x)$ as the limit of $g_a(x) = e^{-a|x|} |x|^{-1}$, and use your result from the last problem set.)

(ii) Solve $\Delta u = f$ on \mathbb{R}^3, where $f \in \mathcal{S}(\mathbb{R}^3)$, writing your answer as a convolution.

Problem 2. Find the Fourier transform on \mathbb{R}^3 of the distribution $u = \delta_{|x|-R}$, i.e. for $\psi \in \mathcal{S}(\mathbb{R}^3)$,

$$u(\psi) = R^2 \int_{S^2} \psi(R\omega) dS(\omega),$$

or in spherical coordinates

$$u(\psi) = R^2 \int_0^\pi \int_0^{2\pi} \psi(R\cos \theta, R\sin \theta \cos \phi, R\sin \theta \sin \phi) \sin \theta d\phi d\theta.$$

(Hint: use that u is compactly supported, so you can evaluate the Fourier transform directly by applying it to $e^{-ix \cdot \xi}$, and use spherical coordinates centered around ξ.)

Problem 3. Write the solution of the wave equation on $\mathbb{R}^3 \times \mathbb{R}$,

$$u_{tt} = c^2 \Delta_x u, \quad u(x,0) = \phi(x), \quad u_t(x,0) = \psi(x),$$

in a form that does not involve the Fourier transform by using convolutions.

Hint: Use the previous problem to deal with the ψ-term. To deal with the ϕ term, note that

$$\cos(c|\xi|t) = \frac{\partial}{\partial t} \left(\frac{\sin(c|\xi|t)}{c|\xi|} \right).$$

Problem 4. Show that if $u \in \mathcal{S}'(\mathbb{R}^n)$ then there is an integer $m \geq 0$ and $C > 0$ such that for all $\phi \in \mathcal{S}(\mathbb{R}^n)$,

$$|u(\phi)| \leq C \|\phi\|_m$$

where

$$\|\phi\|_m = \sum_{|\alpha| \leq m, |\beta| \leq m} \sup_{x \in \mathbb{R}^n} |x^\alpha \partial_x^\beta \phi|.$$

Hints: This relies on the continuity of u as a map $u : \mathcal{S} \to \mathbb{C}$. So suppose for the sake of contradiction that no such m and C exist; in particular for an integer $j > 0$, $m = j$ and $C = j$ do not work, i.e. there exists $\phi_j \in \mathcal{S}$ such that

$$|u(\phi_j)| > j\|\phi_j\|_j.$$

Note that ϕ_j cannot be 0 (for then $u(\phi_j)$ would vanish by linearity). Let $\psi_j = \frac{1}{j\|\phi_j\|_j} \phi_j$, so $\psi_j \in \mathcal{S}$, $\|\psi_j\|_j = \frac{1}{j}$ and

$$|u(\psi_j)| > j\|\psi_j\|_j = 1.$$

Now show that $\psi_j \to 0$ in \mathcal{S} as $j \to \infty$, and use this to get a contradiction with the continuity of u.

1
Problem 5. Suppose that \(u \in \mathcal{S}'(\mathbb{R}^n) \) and \(u \) has compact support. (This means that there is a function \(f \in C_c^\infty(\mathbb{R}^n) \) such that \(u = fu \); namely one would take \(f \) identically 1 on a neighborhood of the support of \(u \).) Show that the \(C^\infty \) function \(Fu \) satisfies
\[
|(Fu)(\xi)| \leq C(1 + |\xi|)^m
\]
for some \(C \) and \(m \).

Hint: Use the result of the previous problem and that \((Fu)(\xi) = u(\phi_\xi), \phi_\xi(x) = f(x)e^{-ix\cdot\xi}\).

Problem 6. Suppose that \(u, v \in \mathcal{S}'(\mathbb{R}^n) \) and \(v \) has compact support. Give a definition of \(u * v \in \mathcal{S}'(\mathbb{R}^n) \) that is consistent with the definition if one of the two distributions is in \(\mathcal{S}(\mathbb{R}^n) \).

Problem 7. Suppose that \(P = \sum_{|\alpha| \leq m} a_\alpha D^\alpha \) on \(\mathbb{R}^n \). A fundamental solution for \(P \) is a distribution \(E \in \mathcal{D}'(\mathbb{R}^n) \) such that \(PE = \delta_0 \). \(E \) is also called a Green’s function with pole at 0.

(i) Show that if \(E \) is a fundamental solution for \(P \) then for \(f \in C_c^\infty(\mathbb{R}^n) \), \(u = E * f \) solves \(Pu = f \).

(ii) Show that the same holds even if \(f \in C_c^0(\mathbb{R}^n) \) (or indeed \(f \in \mathcal{D}'(\mathbb{R}^n) \) with compact support).

You may assume that \(E \in \mathcal{S}'(\mathbb{R}^n) \) to use your results from the previous problem set, if you wish (though this is not strictly necessary).

(iii) Show that the distribution \(E \) given by the function \(\frac{1}{4\pi|x|} \) is a fundamental solution for \(\Delta \) in \(\mathbb{R}^3 \) in two different ways: using the Fourier transform, and directly.

Hint: For the direct calculation, to find \(\Delta E \), recall that \(\Delta E(\phi) = \Delta(\phi) \), and write the right hand side as \(-\lim_{\epsilon \to 0} \int_{|x| \geq \epsilon} \frac{1}{4\pi|x|} \Delta \phi(x) \, dx \), and use the divergence theorem (integrate by parts in polar coordinates).

Problem 8. On \(\mathbb{R}^3 \), write \(x = (x', x_3) \), so \(x' = (x_1, x_2) \). Suppose \(f \) is a compactly supported \(C^1 \) function in \(x_3 \geq 0 \) in \(\mathbb{R}^3 \) vanishing near \(x_3 = 0 \). Find the solution \(u \) of
\[
\Delta u = f, \quad x_3 \geq 0, \quad \partial_{x_3}u(x', 0) = 0
\]
which goes to 0 at infinity. Write your solution as explicitly in terms of \(f \) as possible.

Problem 9. (i) Using the method of reflection, solve the wave equation with Neumann boundary conditions on the interval \([0, \ell]_x\):
\[
u_{tt} - c^2u_{xx} = 0, \quad u(x, 0) = \phi(x), \quad u_t(x, 0) = \psi(x), \quad u_x(0, t) = 0 = u_x(\ell, t).
\]
You do not need to write an explicit formula containing only \(\phi \) and \(\psi \); the appropriate extension of \(\phi \) and \(\psi \) to \(\mathbb{R} \) may appear in the formula.

(ii) If \(\psi = 0 \) and \(\phi \) is \(C^\infty \) except at a point \(x_0 \in (0, \ell) \), where do you know for sure that \(u \) is \(C^\infty \)?

Problem 10. (Optional!) Show that every \(u \in \mathcal{S}'(\mathbb{R}^n) \) can be approximated by elements of \(\mathcal{S}(\mathbb{R}^n) \), i.e. show that there exist \(f_j \in \mathcal{S}(\mathbb{R}^n) \) such that \(\iota f_j \to u \) in \(\mathcal{S}'(\mathbb{R}^n) \). Here recall that \(u \to u \) in \(\mathcal{S}'(\mathbb{R}^n) \) means that \(u_j(\phi) \to u(\phi) \) for all \(\phi \in \mathcal{S}(\mathbb{R}^n) \).

Hints: it suffices to show that there is \(f_j \) and \(m \) such that \(|\iota f_j(\phi) - u(\phi)| \leq j^{-1}\|\phi\|_m \) for all \(\phi \in \mathcal{S} \), see Problem 4 for the notation. So first consider \(v_j = \chi_{j} u \), where \(\chi_j(x) = \chi(x/j) \), and \(\chi \in C_c^\infty(\mathbb{R}^n) \) is identically 1 for \(|x| < 1 \), identically 0 for \(|x| > 2 \). Thus, \(v_j \) are compactly supported distributions, and show that \(v \to u \) in \(\mathcal{S}'(\mathbb{R}^n) \) in the strong sense that for some \(\tilde{m} \), \(|v_j(\phi) - u(\phi)| \leq \tilde{C} j^{-1}\|\phi\|_{\tilde{m}} \).

Now to get the \(f_j \), we approximate the \(v_j \) as follows: \(Fv_j \) is \(C^\infty \), but does not decay at infinity. So let \(g_{jk}(\xi) = \chi_k(\xi)(Fv_j)(\xi), \chi_k \) as above. Show that \(g_{jk} \in \mathcal{S}(\mathbb{R}^n) \), and \(\iota g_{jk} \to Fv_j \) in \(\mathcal{S}'(\mathbb{R}^n) \) as \(k \to \infty \). Now consider \(F^{-1}g_{jk} \).