

# MATH 220: Problem Set 6

## Solutions

**Problem 1.**  $g$  is obviously not a Schwartz function, but it is a tempered distribution, as  $\iota_g(\psi)$  is finite for all  $\psi \in \mathcal{S}(\mathbb{R}^3)$  (which you should check for yourself). Therefore we can make sense of the Fourier transform of the distribution  $\iota_g$ .

**(i)** From PSET 5, Problem 4, we know that (with  $n = -1$ ) for  $a > 0$

$$\begin{aligned} (\mathcal{F}g_a)(\xi) &= 2\pi i \frac{1}{|\xi|} \left( \frac{1}{(a+i|\xi|)} - \frac{1}{(a-i|\xi|)} \right) \\ &= \frac{4\pi}{(a^2 + |\xi|^2)}. \end{aligned} \quad (1)$$

First notice that  $g_a(x) \rightarrow g(x)$  pointwise for all  $x \neq 0$ . Therefore, we have that for all  $\xi \neq 0$ ,

$$(\mathcal{F}g)(\xi) = \left( \mathcal{F} \left( \lim_{a \rightarrow 0^+} g_a \right) \right) (\xi) \xrightarrow{\text{LDCT}} \lim_{a \rightarrow 0^+} (\mathcal{F}g_a)(\xi) = \frac{4\pi}{|\xi|^2}. \quad (2)$$

Notice that both  $\mathcal{F}g_a$  and  $\mathcal{F}g$  define tempered distributions given by  $\iota_{\mathcal{F}g_a}$  and  $\iota_{\mathcal{F}g}$  respectively. This can again be done by checking (which is left to you as an exercise) that  $\iota_{\mathcal{F}g_a}(\psi)$  and  $\iota_{\mathcal{F}g}(\psi)$  are defined for all  $\psi \in \mathcal{S}(\mathbb{R}^3)$ . Next notice that for all  $\psi \in \mathcal{S}(\mathbb{R}^3)$ ,  $(\mathcal{F}\iota_g)(\psi) = \iota_g(\mathcal{F}\psi) = \iota_{\mathcal{F}g}(\psi)$ , where the first equality is by definition, and the second follows by Fubini's theorem (you should check that conditions for applying Fubini's theorem hold). This proves that  $\mathcal{F}\iota_g = \iota_{\mathcal{F}g}$ .

**(ii)** From now on, we are going to use shortcuts in the notations as often as possible. Here we want to solve  $\Delta u = f$  in  $\mathbb{R}^3$ , where  $f \in \mathcal{S}(\mathbb{R}^n)$ . Taking the Fourier transform on both sides, we have

$$-|\xi|^2 (\mathcal{F}u)(\xi) = (\mathcal{F}f)(\xi), \quad (3)$$

which immediately gives

$$(\mathcal{F}u)(\xi) = -\frac{(\mathcal{F}f)(\xi)}{|\xi|^2} \quad (4)$$

and taking the inverse Fourier transform:

$$u = -\mathcal{F}^{-1} \left( \frac{\mathcal{F}f}{|\xi|^2} \right) = -\mathcal{F}^{-1} \left( \frac{1}{|\xi|^2} \right) * f = -\frac{1}{4\pi|x|} * f. \quad (5)$$

That means, in integral form,

$$u(x) = - \int_{\mathbb{R}^3} \frac{f(y)}{4\pi|x-y|} dy. \quad (6)$$

**Problem 2.** By definition, we have that, since  $u = \delta_{|x|-R}$  is compactly supported, with  $g_\xi(x) = e^{-ix \cdot \xi}$ ,

$$(\mathcal{F}u)(\xi) = u(g_\xi) = R^2 \int_{\mathbb{S}^2} e^{-iR\omega \cdot \xi} dS(\omega). \quad (7)$$

Now using spherical coordinates centered around  $\xi$  (same procedure as in PSET 5, Problem 4), we get

$$\begin{aligned} (\mathcal{F}u)(\xi) &= R^2 \int_0^\pi \int_0^{2\pi} e^{-iR|\xi| \cos(\theta_\xi)} \sin \theta_\xi d\phi_\xi d\theta_\xi \\ &= 2\pi R^2 \int_0^\pi e^{-iR|\xi| \cos(\theta_\xi)} \sin \theta_\xi d\theta_\xi \\ &= 2\pi R \left( \frac{e^{iR|\xi|} - e^{-iR|\xi|}}{i|\xi|} \right) \\ &= 4\pi R^2 \frac{\sin(R|\xi|)}{R|\xi|}. \end{aligned} \quad (8)$$

**Problem 3.** We want to solve the wave equation in  $\mathbb{R}_x^3 \times \mathbb{R}_t$ .  
From the course notes, we already know that

$$u(x, t) = \mathcal{F}^{-1}(\cos(c|\xi|t)) *_x \phi + \mathcal{F}^{-1}\left(\frac{\sin(ct|\xi|)}{c|\xi|}\right) *_x \psi. \quad (9)$$

The novelty here is that we actually now know how to solve it in 3D! Indeed, from the last problem, we know that

$$(\mathcal{F}\delta_{|x|-ct})(\xi) = 4\pi c^2 t \frac{\sin(ct|\xi|)}{c|\xi|}. \quad (10)$$

Therefore

$$\mathcal{F}^{-1}\left(\frac{\sin(ct|\xi|)}{c|\xi|}\right) = \frac{1}{4\pi c^2 t} \delta_{|x|-ct}. \quad (11)$$

Moreover, since we have  $\cos(ct|\xi|) = \frac{\partial}{\partial t} \left( \frac{\sin(ct|\xi|)}{c|\xi|} \right)$ , we get that

$$\mathcal{F}^{-1}(\cos(c|\xi|t)) = \mathcal{F}^{-1}\left(\frac{\partial}{\partial t} \left( \frac{\sin(ct|\xi|)}{c|\xi|} \right)\right) = \frac{\partial}{\partial t} \left( \frac{1}{4\pi c^2 t} \delta_{|x|-ct} \right). \quad (12)$$

And finally, we get the closed form solution:

$$\begin{aligned}
u(x, t) &= \frac{\partial}{\partial t} \left( \frac{1}{4\pi c^2 t} \delta_{|x|-ct} \right) *_x \phi + \frac{1}{4\pi c^2 t} \delta_{|x|-ct} *_x \psi \\
&= \frac{\partial}{\partial t} \left( \frac{1}{4\pi c^2 t} \delta_{|x|-ct} \right) (\phi_x) + \frac{1}{4\pi c^2 t} \delta_{|x|-ct} (\psi_x) \\
&= \frac{\partial}{\partial t} \left( \frac{1}{4\pi c^2 t} \int_{|y-x|=ct} \phi(y) dS(y) \right) + \frac{1}{4\pi c^2 t} \int_{|y-x|=ct} \psi(y) dS(y).
\end{aligned} \tag{13}$$

**Problem 4.** The last remaining step of the proof (rest done in the hint) is to verify that  $\psi_j = \frac{\phi_j}{j \|\phi_j\|_j}$  is such that  $\psi_j \xrightarrow{j \rightarrow +\infty} 0$  in  $\mathcal{S}(\mathbb{R}^n)$ . So let's do it by proving that for any  $\alpha, \beta \in \mathbb{N}^n$  multi-indices, for any  $\epsilon > 0$ , there exists  $j_0 \in \mathbb{N}$  such that

$$\forall j > j_0, \sup_{x \in \mathbb{R}^n} |x^\alpha \partial^\beta (\psi_j(x))| < \epsilon. \tag{14}$$

So let  $\alpha, \beta \in \mathbb{N}^p$ , and  $\epsilon > 0$ . We just need to take  $j_0 \in \mathbb{N}$  such that

$$j_0 > |\alpha| + |\beta| \text{ and } \frac{1}{j_0} < \epsilon. \tag{15}$$

We then get, for all  $j > j_0$ ,

$$\frac{|x^\alpha \partial^\beta (\phi_j(x))|}{\|\phi_j\|_j} < 1 \text{ and } \sup_{x \in \mathbb{R}^n} |x^\alpha \partial^\beta (\psi_j(x))| \frac{1}{j} < \epsilon, \tag{16}$$

where the first inequality holds by definition of  $\|\cdot\|_j$ . Now we get the contradiction by noticing that by continuity of  $u$ , we should get  $u(\psi_j) \xrightarrow{j \rightarrow +\infty} 0$ , but following the reasoning of the hint,  $u(\psi_j) > 1$ , which completes the whole proof.

**Remark.** We know that the converse is true. Meaning, if  $u : \mathcal{S}(\mathbb{R}^n) \rightarrow \mathbb{C}$  is linear, and if there exist an integer  $m \in \mathbb{N}$  and a constant  $C > 0$  such that, for all  $\phi \in \mathcal{S}(\mathbb{R}^n)$

$$|u(\phi)| \leq C \|\phi\|_m, \tag{17}$$

then  $u$  is continuous and therefore defines a tempered distribution. Hence, the continuity property is equivalent to (17).

**Problem 5.** Since  $u \in \mathcal{S}'(\mathbb{R}^3)$  and has compact support, we can define the function  $(\mathcal{F}u)(\xi) = u(\phi_\xi)$ , with  $\phi_\xi(x) = f(x)e^{-ix \cdot \xi}$ , and  $f \in \mathcal{C}_c^\infty(\mathbb{R}^n)$  is 1 in the neighborhood of the support of  $u$ . Indeed,

$$(\mathcal{F}u)(\xi) = u(g_\xi) = u(fg_\xi) = u(\phi_\xi), \tag{18}$$

where again  $g_\xi(x) = e^{-ix \cdot \xi}$ . Since  $u \in \mathcal{S}'(\mathbb{R}^3)$  and  $\phi_\xi \in \mathcal{S}(\mathbb{R}^n)$  (because  $f \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ ), we can use the previous problem and write that there exist some constants  $m \in \mathbb{N}$  and  $C_1 > 0$  such that

$$|(\mathcal{F}u)(\xi)| = |u(\phi_\xi)| \leq C_1 \|\phi_\xi\|_m. \quad (19)$$

Now since  $f$  is compactly supported, there exists a constant  $C_2 > 0$  such that for all  $|\alpha| \leq m, |\beta| \leq m$ ,  $\sup_{x \in \mathbb{R}^n} |x^\alpha \partial^\beta f(x)| \leq C_2$ . On the other hand, there exists a constant  $C_3 > 0$  such that for all  $|\beta| \leq m$ ,  $|\partial^\beta e^{-ix \cdot \xi}| \leq C_3 |\xi|^\beta$ . Now using, say, Leibniz formula, and considering the maximum  $C > 0$  of the absolute value of the factors in front of powers of  $|\xi|$ , we get to the conclusion, namely

$$|(\mathcal{F}u)(\xi)| \leq C (1 + |\xi|)^m. \quad (20)$$

**Problem 6.** Let  $u, v \in \mathcal{S}'(\mathbb{R}^3)$ , and  $v$  with compact support. We can define the convolution  $u * v$  in several ways. Let's see two of them.

**A first definition.** For any  $\psi \in \mathcal{S}(\mathbb{R}^n)$ , define

$$(u * v)(\psi) = u(w), \quad (21)$$

where  $w$  is a smooth function given by  $w(x) = (v * \psi_-)(-x)$  and  $\psi_-(z) = \psi(-z)$ . Since  $v$  has compact support,  $v * \psi_-$  is really in  $\mathcal{S}(\mathbb{R}^n)$ . Therefore the stated definition makes sense. Now let's show that it is consistent with the definition if one of them is in  $\mathcal{S}(\mathbb{R}^n)$ .

If  $u = \iota_f$  with  $f \in \mathcal{S}(\mathbb{R}^n)$  and  $v \in \mathcal{S}'(\mathbb{R}^3)$  with compact support, then

$$\begin{aligned} (u * v)(\psi) &= u(w) \\ &= \iota_f(w) \\ &= \int_{\mathbb{R}^n} f(x) (v * \psi_-)(-x) dx \\ &= \int_{\mathbb{R}^n} f(x) v((\psi_-)_{-x}) dx \\ &= v \left( \int_{\mathbb{R}^n} f(x) (\psi_-)_{-x} dx \right) \\ &= v \left( \int_{\mathbb{R}^n} f(x) \psi(x+z) dx \right) \\ &= v \left( \int_{\mathbb{R}^n} f(y-z) \psi(y) dy \right) \\ &= \int_{\mathbb{R}^n} v(f_y) \psi(y) dy \\ &= \int_{\mathbb{R}^n} (v * f)(y) \psi(y) dy \\ &= (v * f)(\psi). \end{aligned} \quad (22)$$

And if  $u \in \mathcal{S}'(\mathbb{R}^3)$  and  $v = \iota_g$  with  $f \in \mathcal{S}(\mathbb{R}^n)$  with compact support, then

$$\begin{aligned}
(u * v)(\psi) &= u(w) \\
&= u\left(\int_{\mathbb{R}^n} g(x)\psi(x+z)dx\right) \\
&= u\left(\int_{\mathbb{R}^n} g(y-z)\psi(y)dy\right) \\
&= \int_{\mathbb{R}^n} u(g_y)\psi(y)dy \\
&= \int_{\mathbb{R}^n} (u * g)(y)\psi(y)dy \\
&= (u * g)(\psi).
\end{aligned} \tag{23}$$

**Remarks.** We use  $w$  because it allows us to write a "clean" definition of the convolution without explicitly writing the dependencies on variables. Also, consistency should be tested on "nice" objects (definitions should be made based on good objects). Therefore I think that it is enough to show consistency in the case  $u = \iota_f$ ,  $v = \iota_g$  with  $f, g \in \mathcal{S}(\mathbb{R}^n)$ . For this case, we have:

$$\begin{aligned}
(u * v)(\psi) &= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x)g(y)\psi(x+y)dxdy \\
&= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x)g(z-x)\psi(z)dxdz \\
&= \int_{\mathbb{R}^n} (f * g)(z)\psi(z)dz \\
&= (\iota_{f*g})(\psi).
\end{aligned} \tag{24}$$

Notice that to get to the definition, the chain of reasoning is made in the reverse order in (24).

**A second definition.** We can define the convolution using Fourier transforms:

$$u * v = \mathcal{F}^{-1}(\mathcal{F}u \cdot \mathcal{F}v(\xi)), \tag{25}$$

where  $\mathcal{F}u$  is the tempered distribution defining the Fourier transform of  $u$ , while  $\mathcal{F}v(\xi)$  is the  $\mathcal{C}^\infty$  function associated to the tempered distribution of the Fourier transform of  $v$ . We need to show why this definition makes sense. Since  $v$  has compact support, we know from the course that  $\mathcal{F}v(\xi)$  is  $\mathcal{C}^\infty$ . We can write

$$\mathcal{F}^{-1}(\mathcal{F}u \cdot \mathcal{F}v(\xi))(\phi) = (\mathcal{F}u \cdot \mathcal{F}v(\xi))(\mathcal{F}^{-1}\phi) = (\mathcal{F}v(\xi) \cdot \mathcal{F}u)(\mathcal{F}^{-1}\phi) = \mathcal{F}u(\mathcal{F}v(\xi) \cdot \mathcal{F}^{-1}\phi), \tag{26}$$

where the last equation is well-defined since  $\mathcal{F}v(\xi) \cdot \mathcal{F}^{-1}\phi \in \mathcal{S}(\mathbb{R}^n)$  by Problem 5. Lastly, the definition of  $u * v$  is clearly consistent with the definition when one of them is in  $\mathcal{S}(\mathbb{R}^n)$  (or both in  $\mathcal{S}(\mathbb{R}^n)$ ). Both these cases were done during the office hours.

**Problem 7.**

**(i)** By definition of the fundamental solution for  $P$ , we have that  $PE = \delta_0$ , meaning that

$$(PE * f)(x) = (\delta_0 * f)(x) = f(x). \quad (27)$$

Therefore, to show that  $Pu = f$ , it is enough to show that  $PE * f = P(E * f)$ , and by the very form of  $P$ , actually we can restrict ourselves to  $\partial_j(E * f) = \partial_j E * f$ . For any  $\psi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ ,

$$\begin{aligned} \partial_j(E * f)(\psi) &= -(E * f)(\partial_j \psi) = - \int_{\mathbb{R}^n} (E * f)(x) \partial_j \psi(x) dx \\ &= - \int_{\mathbb{R}^n} E(f_x) \partial_j \psi(x) dx = -E \left( \int_{\mathbb{R}^n} f_x \partial_j \psi(x) dx \right) \\ &= E \left( \int_{\mathbb{R}^n} -\partial_j f(x - y) \psi(x) dx \right) = \int_{\mathbb{R}^n} E(-\partial_j f_x) \psi(x) dx \\ &= \int_{\mathbb{R}^n} \partial_j E(f_x) \psi(x) dx = \int_{\mathbb{R}^n} (\partial_j E * f)(x) \psi(x) dx \\ &= (\partial_j E * f)(\psi), \end{aligned} \quad (28)$$

which ends the proof.

**(ii)** We want to show here that  $P(E * f)(\psi) = f(\psi)$ .

Using the definition of the convolution used in Problem 6 with Fourier transform, we get that

$$\begin{aligned} \partial_j(E * f)(\psi) &= -(E * f)(\partial_j \psi) = -\mathcal{F}^{-1}(\mathcal{F}E \cdot \mathcal{F}f(\xi))(\partial_j \phi) \\ &= -(\mathcal{F}E \cdot \mathcal{F}f(\xi))(\mathcal{F}^{-1}\partial_j \phi) = -(\mathcal{F}E \cdot \mathcal{F}f(\xi))(-i\xi_j \mathcal{F}^{-1}\phi) \\ &= i\xi_j (\mathcal{F}E \cdot \mathcal{F}f(\xi))(\mathcal{F}^{-1}\phi) = \mathcal{F}^{-1}(i\xi_j \mathcal{F}E \cdot \mathcal{F}f(\xi))(\phi) \\ &= \mathcal{F}^{-1}(\mathcal{F}\partial_j E \cdot \mathcal{F}f(\xi))(\phi) \\ &= (\partial_j E * f)(\psi). \end{aligned} \quad (29)$$

We can work this out similarly using the other definition.

**(iii)** By using the Fourier transform, the result is straightforward. Indeed, we want to find  $E$  such that  $\Delta E = \delta_0$ . So we take the Fourier transform on both sides to get

$$-|\xi|^2 \mathcal{F}E = \mathcal{F}\delta_0 = 1. \quad (30)$$

Therefore  $\mathcal{F}E = -\frac{1}{4\pi|\xi|^2}$  and by using Problem 1, we know that  $E$  is given by

$$E(x) = -\frac{1}{4\pi|x|}. \quad (31)$$

Now by using direct calculations, we are going to use the hint. So here we take the function  $E(x) = -\frac{1}{4\pi|x|}$ , and verify that it is a fundamental solution for  $\Delta$  in  $\mathbb{R}^3$ , that is  $\Delta E(\phi) = \delta_0(\phi) = \phi(0)$ . We know that for all  $\phi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ ,  $\Delta E(\phi) = E(\Delta\phi)$ . Since we have a singularity at 0 for  $E$ , we need to be careful and work with limits.

Take  $\epsilon > 0$ . By the divergence theorem, we obtain that

$$I_\epsilon = \int_{|x| \geq \epsilon} -\frac{1}{4\pi|x|} \Delta\phi(x) dx = - \int_{|x| \geq \epsilon} \nabla \left( -\frac{1}{4\pi|x|} \right) \cdot \nabla\phi(x) dx + \int_{|x| = \epsilon} -\frac{1}{4\pi|x|} \frac{\partial\phi}{\partial\nu} dS(x), \quad (32)$$

where  $\nu$  is the outward normal (pointing towards origin) along  $\partial B(0, \epsilon)$ , ball centered at 0 and of radius  $\epsilon$ . Applying divergence theorem (again) to the first term in the right hand side of the above equation, we get

$$I_\epsilon = \int_{|x| \geq \epsilon} \Delta \left( -\frac{1}{4\pi|x|} \right) \phi(x) dx - \int_{|x| = \epsilon} \frac{\partial \left( -\frac{1}{4\pi|x|} \right)}{\partial\nu} \phi(x) dS(x) + \int_{|x| = \epsilon} -\frac{1}{4\pi|x|} \frac{\partial\phi}{\partial\nu} dS(x). \quad (33)$$

Since  $\Delta \left( -\frac{1}{4\pi|x|} \right) = 0$  for  $x \neq 0$ , the first term on the right hand side just vanishes. Since  $\phi \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ , using spherical coordinates, we obtain

$$\begin{aligned} \left| \int_{|x| = \epsilon} -\frac{1}{4\pi|x|} \frac{\partial\phi}{\partial\nu} dS(x) \right| &\leq C \int_{|x| = \epsilon} \frac{1}{|x|} dS(x) \\ &\leq \frac{C}{\epsilon} \int_{|x| = \epsilon} dS(x) \\ &= \frac{C}{\epsilon} 4\pi\epsilon^2 = 4\pi C \epsilon \xrightarrow{\epsilon \rightarrow 0} 0. \end{aligned} \quad (34)$$

Therefore we also get rid to this term at the limit. Finally, we need to show that

$$\lim_{\epsilon \rightarrow 0^+} \int_{|x| = \epsilon} \frac{\partial \left( \frac{1}{4\pi|x|} \right)}{\partial\nu} \phi(x) dS(x) = \phi(0). \quad (35)$$

This is done by first noticing that

$$\frac{\partial \left( -\frac{1}{4\pi|x|} \right)}{\partial\nu} = \nabla \left( -\frac{1}{4\pi|x|} \right) \cdot \nu = \frac{1}{4\pi} \frac{x}{|x|^3} \cdot \frac{-x}{|x|} = -\frac{1}{4\pi|x|^2}. \quad (36)$$

Therefore

$$\lim_{\epsilon \rightarrow 0^+} \int_{|x| = \epsilon} \frac{\partial \left( -\frac{1}{4\pi|x|} \right)}{\partial\nu} \phi(x) dS(x) = \lim_{\epsilon \rightarrow 0^+} \int_{|x| = \epsilon} -\frac{1}{4\pi\epsilon^2} \phi(x) dS(x) = -\phi(0) \quad (37)$$

The limit here is easy to justify since for instance we can write

$$\begin{aligned} \inf_{y \in \mathbb{S}^2} \phi(\epsilon y) \int_{|x|=\epsilon} \frac{1}{4\pi\epsilon^2} dS(x) &\leq \int_{|x|=\epsilon} \frac{1}{4\pi\epsilon^2} \phi(x) dS(x) \leq \sup_{y \in \mathbb{S}^2} \phi(\epsilon y) \int_{|x|=\epsilon} \frac{1}{4\pi\epsilon^2} dS(x) \\ &\Downarrow \\ \inf_{y \in \mathbb{S}^2} \phi(\epsilon y) &\leq \int_{|x|=\epsilon} \frac{1}{4\pi\epsilon^2} \phi(x) dS(x) \leq \sup_{y \in \mathbb{S}^2} \phi(\epsilon y) \end{aligned} \quad (38)$$

and

The limit here is easy to justify since for instance we can write

$$\begin{cases} \inf_{y \in \mathbb{S}^2} \phi(\epsilon y) \xrightarrow[\epsilon \rightarrow 0]{} \phi(0), \\ \sup_{y \in \mathbb{S}^2} \phi(\epsilon y) \xrightarrow[\epsilon \rightarrow 0]{} \phi(0). \end{cases} \quad (39)$$

Hence

$$E(\Delta\phi) = \lim_{\epsilon \rightarrow 0^+} I_\epsilon = \lim_{\epsilon \rightarrow 0^+} \int_{|x| \geq \epsilon} \Delta \left( -\frac{1}{4\pi|x|} \right) \phi(x) dx = \phi(0). \quad (40)$$

**Problem 8.** We follow the hint. Let's consider  $v_j = \chi_j u$  (they are hence of compact support). We want to show that

$$v_j \xrightarrow[j \rightarrow +\infty]{} u \text{ in } \mathcal{S}'(\mathbb{R}^3). \quad (41)$$

But this means that, for all  $\psi \in \mathcal{S}(\mathbb{R}^n)$ ,

$$v_j(\psi) \xrightarrow[j \rightarrow +\infty]{} u(\psi), \quad (42)$$

or, defining  $\psi_j = \chi_j \psi$ ,

$$v_j(\psi) = \chi_j u(\psi) = u(\psi_j) \xrightarrow[j \rightarrow +\infty]{} u(\psi), \quad (43)$$

Therefore, it suffices to show that  $\psi_j \xrightarrow[j \rightarrow +\infty]{} \psi$  in  $\mathcal{S}(\mathbb{R}^n)$ . Indeed, for all  $j \leq 1$ ,  $\psi_j$  is in  $\mathcal{S}(\mathbb{R}^n)$ . Therefore  $\psi - \chi_j \psi = (1 - \chi_j)\psi$  is in  $\mathcal{S}(\mathbb{R}^n)$  and also  $\text{Supp}((1 - \chi_j)\psi) \subset \{|x| \geq j\}$ . Now let's take  $\alpha, \beta \in \mathbb{N}^p$  ( $p$  arbitrary) multi-indices. Since by definition of  $\chi_j$ ,  $|\partial^\beta \chi_j(x)| \leq |\partial^\beta \chi(x)| \leq C_1$ , then using the fact that  $\psi$  is a Schwartz function (along with the Leibniz formula for instance) we conclude that

$$|x^\alpha \partial^\beta (1 - \chi_j(x))\psi(x)| \leq \sup_{\{|x| \geq j\}} \frac{C}{1 + |x|} \leq \frac{C}{1 + j} \xrightarrow[j \rightarrow +\infty]{} 0, \quad (44)$$

which ends the proof of the first fact.

Now since  $v_j$  are compactly supported, we know that  $\mathcal{F}v_j$  is  $\mathcal{C}^\infty$ , but we are not assured that they rapidly decay at infinity. Therefore we define

$$g_{jk}(\xi) = \chi_k(\xi) (\mathcal{F}v_j)(\xi) \quad (45)$$

Since  $v_j$  has compact support and  $\chi_j \in \mathcal{S}(\mathbb{R}^n)$ , Pb5 allows us to conclude that  $g_{jk} \in \mathcal{S}(\mathbb{R}^n)$  (or in this case, we can simply invoke the fact that  $\chi_j \in \mathcal{C}_c^\infty(\mathbb{R}^n)$ ). Now using exactly the same proof as for the first step, we get that

$$\iota_{g_{jk}} \xrightarrow[j \rightarrow +\infty]{} \mathcal{F}v_j \text{ in } \mathcal{S}'(\mathbb{R}^3). \quad (46)$$

Finally, considering  $h_{jk} = \mathcal{F}^{-1}g_{jk}$ , a first step limit gives

$$h_{jk} = \mathcal{F}^{-1}g_{jk} \xrightarrow[j \rightarrow +\infty]{} \mathcal{F}^{-1}(\mathcal{F}v_j) = v_j \text{ in } \mathcal{S}'(\mathbb{R}^3), \quad (47)$$

and a second step (first result) ends the proof:

$$v_j \xrightarrow[j \rightarrow +\infty]{} u \text{ in } \mathcal{S}'(\mathbb{R}^3). \quad (48)$$