MATH 220: Problem Set 6
Solutions

Problem 1. g isobviously not a Schwartz function, but it is a tempered distri-
bution, as t,4(1) is finite for all ¢» € S(R®) (which you should check for yourself).
Therefore we can make sense of the Fourier transform of the distribution ¢.

(i) From PSET 5, Problem 4, we know that (with n = —1) for a >0

1 1 !
(Fga) (§) = 27”@((@ +ile])  (a— i|£|)) (1)
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First notice that g,(z) — g(x) pointwise for all  # 0. Therefore, we have that
for all £ # 0,

(Fg) (&) = (f( lim g)) (©) "2 lim (Fga) (€) = o (2)
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Notice that both Fg, and Fg define tempered distributions given by ¢z, and
trq4 respectively. This can again be done by checking (which is left to you as an
exercise) that ¢z, (1) and tr4(¢)) are defined for all ¢ € S(R?). Next notice
that for all ¢ € S(R?), (Fiy)(¥) = 14(Ftp) = tx,(1)), where the first equality is
by definition, and the second follows by Fubini’s theorem (you should check that
conditions for applying Fubini’s theorem hold). This proves that Firy = vx4.

(ii) From now on, we are going to use shortcuts in the notations as often as
possible. Here we want to solve Au = f in R3, where f € S(R"). Taking the
Fourier transform on both sides, we have

—€* (Fu) (&) = (F) (&), (3)
which immediately gives
o =-F0E @)

and taking the inverse Fourier transform:
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That means, in integral form,

u(z) = —/]R &dy. (6)
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Problem 2. By definition, we have that, since u = 0|,|_r is compactly sup-
ported, with ge(x) = =8,

(Fu) (€) = u(ge) = R / IR G (). (7)

SZ
Now using spherical coordinates centered around & (same procedure as in PSET
5, Problem 4), we get
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Problem 3. We want to solve the wave equation in R? x R;.
From the course notes, we already know that

(@, £) = F1 (cos(cl¢lt)) a ¢ + F (mig:gn) s )

The novelty here is that we actually now know how to solve it in 3D! Indeed,
from the last problem, we know that

5, sin(ct|€])

(Fog-ar) (€)= dmett ™22, (10)
Therefore )

71 (Sm;cgt'g)) _ 4w1c?t5|‘"“|_“' (11)
Moreover, since we have cos(ct/€]) = % (mgﬁ) we get that

Ft (cos(clélt) = F~ (gt (smicgﬂ))) = % (Z;c%%_ct) - (12)



And finally, we get the closed form solution:
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ol pa [ wasw)) o [ vwdst)
- ot 47TC2t ly—z|=ct Y Y 47T02t ly—z|=ct Y Y-

(13)

Problem 4. The last remaining step of the proof (rest done in the hint) is to

verify that 9; = %

illésll;
proving that for any «, 8 € N™ multi-indices , for any € > 0, there exists jo € N

such that

is such that 1; P 0 in S(R™). So let’s do it by
j—+oo

Vi > jo, suﬂg ’x“ﬁﬁ(z/)j(x)ﬂ <e. (14)
zeR™

So let a, B € NP and € > 0. We just need to take jo € N such that

1
Jo > |a) + 18 and — < e. (15)
Jo
We then get, for all j > jo,
98 (. 1
[z207(¢;(=))| < land sup ‘maaﬁ(l/)j(x))‘ = < (16)
165115 zeR™ j

where the first inequality holds by definition of | - ||;. Now we get the contra-
diction by noticing that by continuity of u, we should get u(v;) —+> 0, but
J—+00

following the reasoning of the hint, u(¢;) > 1, which completes the whole proof.

Remark. We know that the converse is true. Meaning, if u : S(R") — C is
linear, and if there exist an integer m € N and a constant C' > 0 such that, for
all ¢ € S(R™)

[u(@)| < Cllllm, (17)
then wu is continuous and therefore defines a tempered distribution. Hence, the

continuity property is equivalent to (17).

Problem 5. Since u € S'(R3) and has compact support, we can define the
function (Fu)(€) = u(ee), with ¢¢(z) = f(x)e” ¢, and f € C2°(R") is 1 in the
neighborhood of the support of u. Indeed,

(Fu)(§) = ulge) = u(fge) = ulde), (18)



where again g¢(z) = e~¢. Since u € §'(R?) and ¢¢ € S(R™) (because f €
C°(R™)) , we can use the previous problem and write that there exist some
constants m € N and C; > 0 such that

[(Fu)(€)] = lu(de)| < Culldelm- (19)

Now since f is compactly supported, there exists a constant Cy > 0 such that
for all || < m,|B|] < m, sup,egn [220° f(z)| < Ca. On the other hand, there
exists a constant C3 > 0 such that for all |8| < m, [0%e™ ¢ < C3/¢|%. Now
using, say, Leibniz formula, and considering the maximum C' > 0 of the absolute
value of the factors in front of powers of |£|, we get to the conclusion, namely

[(Fu)(© < CA+[Eh™ . (20)

Problem 6. Let u,v € 8'(R?), and v with compact support. We can define

the convolution u * v in several ways. Let’s see two of them.

A first definition. For any ¢ € S(R™), define

(uxv)(¥) = u(w), (21)

where w is a smooth function given by w(z) = (vxp_)(—z) and ¥_(z) = ¥(—2).
Since v has compact support, v % ¢_ is really in S(R™). Therefore the stated
definition makes sense. Now let’s show that it is consistent with the definition
if one of them is in S(R™).

If u =1ty with f € S(R") and v € §'(R?) with compact support, then

(uxv)(¥) = u(w)



And if u € §'(R3) and v = 1, with f € S(R") with compact support, then

(uxv)(¥) = u(w)
=u /n g(x)p(z + z)daz)

=/ g(y—zw(y)dy)
= [ ulgy)¥(y)dy

n

f (u*g)(y)Y(y)dy

Rn

= (uxg)(¥).

Remarks. We use w because it allows us to write a "clean” definition of the
convolution without explicitly writing the dependencies on variables.
Also, consistency should be tested on ”nice” objects (definitions should be made
based on good objects). Therefore I think that it is enough to show consistency
in the case u = 1y, v = 1, with f,g € S(R™). For this case, we have:

(u*v) / / f(z Y(z + y)dady
f )g(z — z)¢(z)dzdz (24)
f *9)(2)Y(2)dz

= oy

Notice that to get to the definition, the chain of reasoning is made in the reverse
order in (24).

A second definition. We can define the convolution using Fourier trans-
forms:

uxv=F ! (Fu-Fu(§)), (25)

where Fu is the tempered distribution defining the Fourier transform of u, while
Fu(§) is the C* function associated to the tempered distribution of the Fourier
transform of v. We need to show why this definition makes sense. Since v has
compact support, we know from the course that Fuv(§) is C*°. We can write

FH(Fu-Fo(€)) (6) = (Fu- Fo(€)) (F1¢) = (Fu(€) - Fu) (F'¢) = Fu(Fu(§)-F '),
(26)

where the last equation is well-defined since Fv(¢) - F~1¢ € S(R™) by Problem

5. Lastly, the definition of u * v is clearly consistent with the definition when

one of them is in S(R™) (or both in S(R™)). Both these cases were done during

the office hours.



Problem 7.

(i) By definition of the fundamental solution for P, we have that PE = §o,
meaning that

(PE * f)(z) = (00 % f)(x) = f(x). (27)

Therefore, to show that Pu = f, it is enough to show that PExf = P(Exf), and
by the very form of P, actually we can restrict ourselves to 0;(E* f) = 0;E « f.
For any 1 € C2°(R"™),

G(E+ ) = —(Ex[f)9;¢9) = */ (B f)(2)0;¢(z)dx

n

= —/n E(f2)0;¢(x)dx = E( o fTﬁjw(m)dx)
([ ~osta—yis) = [ EC0L) v

Rn
:/ O;E (fz)Y(x)dx = / (0;E * f)(x)(x)dz
Rn Rn
= (0;E = f)(¥),
(28)
which ends the proof.

(ii) We want to show here that P(E  f)(¢) = f(v).
Using the definition of the convolution used in Problem 6 with Fourier transform
, we get that

O;(Ex f)(w) =—(Ex*)0) =-F ' (FE-F[(§) (9;9)
—(FE-Ff(©)) (F'0;0) = — (FE- Ff(€)) (—i&F '¢)
=i&; (FE-Ff(€) (F'¢) = F ' (i§GFE - Ff(€)) ()
FHFOE - Ff(€))(9)

= (0B * f) ().

(29)
We can work this out similarly using the other definition.

(iii) By using the Fourier transform, the result is straightforward. Indeed, we
want to find E such that AF = d9. So we take the Fourier transform on both
sides to get

—|¢PFE = Fo = 1. (30)
1
Therefore FE = _W and by using Problem 1, we know that F is given by
0
B(#) = -1 (31)
¥ = Ar|z|



Now by using direct calculations, we are going to ue the hint. So here we take

1
the function E(x) = e and verify that it is a fundamental solution for
|

A in R3, that is AE(¢) = do(¢) = ¢(0). We know that for all ¢ € C°(R"),
AE(¢) = E(Ag). Since we have a singularity at 0 for E, we need to be careful
and work with limits.

Take € > 0. By the divergence theorem, we obtain that

1 1 Y
IE:/ A wdx:f/ v()v :de+/ = s
|z|>e 47T|.23‘ ¢( ) |x|>e 47T|$| d)( ) |x|=€ 47T|J)| ov

(32)
where v is the outward normal (pointing towards origin) along 0B(0,€), ball
centered at 0 and of radius e. Applying divergence theorem (again) to the first
term in the right hand side of the above equation, we get

__1
fe= /lee A (_ 4771|‘T> ¢<$)d$_~/lﬂc|=6 : ( ;lel) ¢($)ds(1’)+/ _47T1|1'| %ds

|x|=€
(33)
1
Since A (—4|> = 0 for x # 0, the first term on the right hand side just
|z
vanishes. Since ¢ € C2°(R"™), using spherical coordinates, we obtain
1 99 1
- —dS(z)] <C —dS(x)
/z|_e 47T|£L'| ov |x|=€ |CL"
C
< — dS(z) (34)
€ J|z|=e
= S4re? = 4nCe — 0.
¢ e—0

Therefore we also get rid to this term at the limit. Finally, we need to show
that

lim 6(4’“1’”>¢(x)d5(x) — $(0). (35)
=0t J|z)=¢ v

This is done by first noticing that

‘W_v< S P S By

ov  Anla| T Am B 2| - Anl|z|?
Therefore
lim W(ﬁ(:ﬂ)dé‘(x) — lim — 1 s(@)ds(z) = —4(0)
e—0t |z|=¢ ov a e—0t |z|=¢ 47e? a

(),

().



The limit here is easy to justify since for instance we can write

inf g(ey) /| . as) < [ . o 0()dS(x) < sup o(ey) /| . g dS()

yes? 4me? yes?

1
ylélsg ¢(€y) = /zle 4me? (;S(I)dS(SC) < sup ¢(Ey)

yes?
(38)
and
The limit here is easy to justify since for instance we can write
inf ¢(ey) —— ¢(0),
nf, o(ey) 5> 9(0) 50)

sup o(ey) — 6(0).
yESQ €E—

Hence

i = lim 1 x)dx =
B(Ag) = lim I, = | WA( )¢< )z =6(0).  (40)

=0+ 4|

Problem 8. We follow the hint. Let’s consider v; = x;u (they are hence of
compact support). We want to show that

v; — uin S'(R?). (41)
J—+oo

But this means that, for all ¢ € S(R"),

v; (¥) m u(y), (42)
or, defining ¥; = x;v,
vi () = xgu(v) = uty) —— u(¥), (43)

Therefore, it suffices to show that v; —+> ¥ in S(R™). Indeed, for all j <1,
j—+oo

; is in S(R™). Therefore ¢ — x4 = (1 — x;)¢ is in S(R™) and also Supp((1 —
X)) C {|z] > j}. Now let’s take o, 5 € NP (p arbitrary) multi-indices. Since
by definition of x;, [0%x;(z)| < [0°x(x)| < Ci, then using the fact that v is
a Schwartz function (along with the Leibniz formula for instance) we conclude
that

C
220P(1 — v (x )| < sup < - 0, 44
70 (1 XIS s T S s (44)
which ends the proof of the first fact.

Now since v; are compactly supported, we know that Fv; is C*°, but we are not
assured that they rapidly decay at infinity. Therefore we define

9ik(§) = xx (&) (Fuv;) (€) (45)



Since v; has compact support and x; € S(R™), Pb5 allows us to conclude that
gjk € S(R™) (or in this case, we can simply invoke the fact that x; € C2°(R™)).
Now using exactly the same proof as for the first step, we get that

O~ Fv; in S'(R?). (46)
Finally, considering hji = F 'gjk, a first step limit gives
hjk = F gk = F 1 (Fv;) =v;j in §'(R?), (47)
and a second step (first result) ends the proof:

v; — u in S'(R?). (48)
Jj—+oo



