
MATH 220: Problem Set 6

Solutions

Problem 1. g is obviously not a Schwartz function, but it is a tempered distri-
bution, as ιg(ψ) is finite for all ψ ∈ S(R3) (which you should check for yourself).
Therefore we can make sense of the Fourier transform of the distribution ιg.

(i) From PSET 5, Problem 4, we know that (with n = −1) for a > 0

(Fga) (ξ) = 2πi
1

|ξ|

(
1

(a+ i|ξ|)
− 1

(a− i|ξ|)

)
=

4π

(a2 + |ξ|2)
.

(1)

First notice that ga(x)→ g(x) pointwise for all x 6= 0. Therefore, we have that
for all ξ 6= 0,

(Fg) (ξ) =

(
F
(

lim
a→0+

ga

))
(ξ)

LDCT
= lim

a→0+
(Fga) (ξ) =

4π

|ξ|2
. (2)

Notice that both Fga and Fg define tempered distributions given by ιFga and
ιFg respectively. This can again be done by checking (which is left to you as an
exercise) that ιFga(ψ) and ιFg(ψ) are defined for all ψ ∈ S(R3). Next notice
that for all ψ ∈ S(R3), (Fιg)(ψ) = ιg(Fψ) = ιFg(ψ), where the first equality is
by definition, and the second follows by Fubini’s theorem (you should check that
conditions for applying Fubini’s theorem hold). This proves that Fιg = ιFg.

(ii) From now on, we are going to use shortcuts in the notations as often as
possible. Here we want to solve ∆u = f in R3, where f ∈ S(Rn). Taking the
Fourier transform on both sides, we have

− |ξ|2 (Fu) (ξ) = (Ff) (ξ), (3)

which immediately gives

(Fu) (ξ) = − (Ff) (ξ)

|ξ|2
(4)

and taking the inverse Fourier transform:

u = −F−1
(
Ff
|ξ|2

)
= −F−1

(
1

|ξ|2

)
∗ f = − 1

4π|x|
∗ f. (5)
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That means, in integral form,

u(x) = −
∫
R3

f(y)

4π|x− y|
dy. (6)

Problem 2. By definition, we have that, since u = δ|x|−R is compactly sup-

ported, with gξ(x) = e−ix·ξ,

(Fu) (ξ) = u(gξ) = R2

∫
S2
e−iRω·ξdS(ω). (7)

Now using spherical coordinates centered around ξ (same procedure as in PSET
5, Problem 4), we get

(Fu) (ξ) = R2

∫ π

0

∫ 2π

0

e−iR|ξ| cos(θξ) sin θξdφξdθξ

= 2πR2

∫ π

0

e−iR|ξ| cos(θξ) sin θξdθξ

= 2πR

(
eiR|ξ| − e−iR|ξ|

i|ξ|

)
= 4πR2 sin(R|ξ|)

R|ξ|
.

(8)

Problem 3. We want to solve the wave equation in R3
x × Rt.

From the course notes, we already know that

u(x, t) = F−1 (cos(c|ξ|t)) ∗x φ+ F−1
(

sin(ct|ξ|)
c|ξ|

)
∗x ψ. (9)

The novelty here is that we actually now know how to solve it in 3D! Indeed,
from the last problem, we know that

(
Fδ|x|−ct

)
(ξ) = 4πc2t

sin(ct|ξ|)
c|ξ|

. (10)

Therefore

F−1
(

sin(ct|ξ|)
c|ξ|

)
=

1

4πc2t
δ|x|−ct. (11)

Moreover, since we have cos(ct|ξ|) =
∂

∂t

(
sin(ct|ξ|)
c|ξ|

)
, we get that

F−1 (cos(c|ξ|t)) = F−1
(
∂

∂t

(
sin(ct|ξ|)
c|ξ|

))
=

∂

∂t

(
1

4πc2t
δ|x|−ct

)
. (12)
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And finally, we get the closed form solution:

u(x, t) =
∂

∂t

(
1

4πc2t
δ|x|−ct

)
∗x φ+

1

4πc2t
δ|x|−ct ∗x ψ

=
∂

∂t

(
1

4πc2t
δ|x|−ct

)
(φx) +

1

4πc2t
δ|x|−ct(ψx)

=
∂

∂t

(
1

4πc2t

∫
|y−x|=ct

φ(y)dS(y)

)
+

1

4πc2t

∫
|y−x|=ct

ψ(y)dS(y).

(13)

Problem 4. The last remaining step of the proof (rest done in the hint) is to

verify that ψj =
φj

j‖φj‖j
is such that ψj −−−−→

j→+∞
0 in S(Rn). So let’s do it by

proving that for any α, β ∈ Nn multi-indices , for any ε > 0, there exists j0 ∈ N
such that

∀j > j0, sup
x∈Rn

∣∣xα∂β(ψj(x))
∣∣ < ε. (14)

So let α, β ∈ Np, and ε > 0. We just need to take j0 ∈ N such that

j0 > |α|+ |β| and
1

j0
< ε. (15)

We then get, for all j > j0,

|xα∂β(φj(x))|
‖φj‖j

< 1 and sup
x∈Rn

∣∣xα∂β(ψj(x))
∣∣ 1

j
< ε, (16)

where the first inequality holds by definition of ‖ · ‖j . Now we get the contra-
diction by noticing that by continuity of u, we should get u(ψj) −−−−→

j→+∞
0, but

following the reasoning of the hint, u(ψj) > 1, which completes the whole proof.

Remark. We know that the converse is true. Meaning, if u : S(Rn) → C is
linear, and if there exist an integer m ∈ N and a constant C > 0 such that, for
all φ ∈ S(Rn)

|u(φ)| ≤ C‖φ‖m, (17)

then u is continuous and therefore defines a tempered distribution. Hence, the
continuity property is equivalent to (17).

Problem 5. Since u ∈ S ′(R3) and has compact support, we can define the
function (Fu)(ξ) = u(φξ), with φξ(x) = f(x)e−ix·ξ, and f ∈ C∞c (Rn) is 1 in the
neighborhood of the support of u. Indeed,

(Fu)(ξ) = u(gξ) = u(fgξ) = u(φξ), (18)
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where again gξ(x) = e−ix·ξ. Since u ∈ S ′(R3) and φξ ∈ S(Rn) (because f ∈
C∞c (Rn)) , we can use the previous problem and write that there exist some
constants m ∈ N and C1 > 0 such that

|(Fu)(ξ)| = |u(φξ)| ≤ C1‖φξ‖m. (19)

Now since f is compactly supported, there exists a constant C2 > 0 such that
for all |α| ≤ m, |β| ≤ m, supx∈Rn |xα∂βf(x)| ≤ C2. On the other hand, there
exists a constant C3 > 0 such that for all |β| ≤ m, |∂βe−ix·ξ| ≤ C3|ξ|β . Now
using, say, Leibniz formula, and considering the maximum C > 0 of the absolute
value of the factors in front of powers of |ξ|, we get to the conclusion, namely

|(Fu)(ξ)| ≤ C (1 + |ξ|)m . (20)

Problem 6. Let u, v ∈ S ′(R3), and v with compact support. We can define

the convolution u ∗ v in several ways. Let’s see two of them.

A first definition. For any ψ ∈ S(Rn), define

(u ∗ v)(ψ) = u(w), (21)

where w is a smooth function given by w(x) = (v∗ψ−)(−x) and ψ−(z) = ψ(−z).
Since v has compact support, v ∗ ψ− is really in S(Rn). Therefore the stated
definition makes sense. Now let’s show that it is consistent with the definition
if one of them is in S(Rn).

If u = ιf with f ∈ S(Rn) and v ∈ S ′(R3) with compact support, then

(u ∗ v)(ψ) = u(w)
= ιf (w)

=

∫
Rn
f(x)(v ∗ ψ−)(−x)dx

=

∫
Rn
f(x)v ((ψ−)−x) dx

= v

(∫
Rn
f(x)(ψ−)−xdx

)
= v

(∫
Rn
f(x)ψ(x+ z)dx

)
= v

(∫
Rn
f(y − z)ψ(y)dy

)
=

∫
Rn
v(fy)ψ(y)dy

=

∫
Rn

(v ∗ f)(y)ψ(y)dy

= (v ∗ f)(ψ).

(22)
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And if u ∈ S ′(R3) and v = ιg with f ∈ S(Rn) with compact support, then

(u ∗ v)(ψ) = u(w)

= u

(∫
Rn
g(x)ψ(x+ z)dx

)
= u

(∫
Rn
g(y − z)ψ(y)dy

)
=

∫
Rn
u(gy)ψ(y)dy

=

∫
Rn

(u ∗ g)(y)ψ(y)dy

= (u ∗ g)(ψ).

(23)

Remarks. We use w because it allows us to write a ”clean” definition of the
convolution without explicitly writing the dependencies on variables.
Also, consistency should be tested on ”nice” objects (definitions should be made
based on good objects). Therefore I think that it is enough to show consistency
in the case u = ιf , v = ιg with f, g ∈ S(Rn). For this case, we have:

(u ∗ v)(ψ) =

∫
Rn

∫
Rn
f(x)g(y)ψ(x+ y)dxdy

=

∫
Rn

∫
Rn
f(x)g(z − x)ψ(z)dxdz

=

∫
Rn

(f ∗ g)(z)ψ(z)dz

= (ιf∗g)(ψ).

(24)

Notice that to get to the definition, the chain of reasoning is made in the reverse
order in (24).

A second definition. We can define the convolution using Fourier trans-
forms:

u ∗ v = F−1 (Fu · Fv(ξ)) , (25)

where Fu is the tempered distribution defining the Fourier transform of u, while
Fv(ξ) is the C∞ function associated to the tempered distribution of the Fourier
transform of v. We need to show why this definition makes sense. Since v has
compact support, we know from the course that Fv(ξ) is C∞. We can write

F−1 (Fu · Fv(ξ)) (φ) = (Fu · Fv(ξ)) (F−1φ) = (Fv(ξ) · Fu) (F−1φ) = Fu(Fv(ξ)·F−1φ),
(26)

where the last equation is well-defined since Fv(ξ) · F−1φ ∈ S(Rn) by Problem
5. Lastly, the definition of u ∗ v is clearly consistent with the definition when
one of them is in S(Rn) (or both in S(Rn)). Both these cases were done during
the office hours.
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Problem 7.

(i) By definition of the fundamental solution for P , we have that PE = δ0,
meaning that

(PE ∗ f)(x) = (δ0 ∗ f)(x) = f(x). (27)

Therefore, to show that Pu = f , it is enough to show that PE∗f = P (E∗f), and
by the very form of P , actually we can restrict ourselves to ∂j(E ∗ f) = ∂jE ∗ f .
For any ψ ∈ C∞c (Rn),

∂j(E ∗ f)(ψ) = −(E ∗ f)(∂jψ) = −
∫
Rn

(E ∗ f)(x)∂jψ(x)dx

= −
∫
Rn
E(fx)∂jψ(x)dx = −E

(∫
Rn
fx∂jψ(x)dx

)
= E

(∫
Rn
−∂jf(x− y)ψ(x)dx

)
=

∫
Rn
E (−∂jfx)ψ(x)dx

=

∫
Rn
∂jE (fx)ψ(x)dx =

∫
Rn

(∂jE ∗ f)(x)ψ(x)dx

= (∂jE ∗ f)(ψ),
(28)

which ends the proof.

(ii) We want to show here that P (E ∗ f)(ψ) = f(ψ).
Using the definition of the convolution used in Problem 6 with Fourier transform
, we get that

∂j(E ∗ f)(ψ) = −(E ∗ f)(∂jψ) = −F−1 (FE · Ff(ξ)) (∂jφ)
= − (FE · Ff(ξ)) (F−1∂jφ) = − (FE · Ff(ξ)) (−iξjF−1φ)
= iξj (FE · Ff(ξ)) (F−1φ) = F−1 (iξjFE · Ff(ξ)) (φ)
= F−1 (F∂jE · Ff(ξ)) (φ)
= (∂jE ∗ f)(ψ).

(29)
We can work this out similarly using the other definition.

(iii) By using the Fourier transform, the result is straightforward. Indeed, we
want to find E such that ∆E = δ0. So we take the Fourier transform on both
sides to get

−|ξ|2FE = Fδ0 = 1. (30)

Therefore FE = − 1

4π|ξ|2
and by using Problem 1, we know that E is given by

E(x) = − 1

4π|x|
. (31)
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Now by using direct calculations, we are going to ue the hint. So here we take

the function E(x) = − 1

4π|x|
, and verify that it is a fundamental solution for

∆ in R3, that is ∆E(φ) = δ0(φ) = φ(0). We know that for all φ ∈ C∞c (Rn),
∆E(φ) = E(∆φ). Since we have a singularity at 0 for E, we need to be careful
and work with limits.

Take ε > 0. By the divergence theorem, we obtain that

Iε =

∫
|x|≥ε

− 1

4π|x|
∆φ(x)dx = −

∫
|x|≥ε

∇
(
− 1

4π|x|

)
·∇φ(x)dx+

∫
|x|=ε

− 1

4π|x|
∂φ

∂ν
dS(x),

(32)
where ν is the outward normal (pointing towards origin) along ∂B(0, ε), ball
centered at 0 and of radius ε. Applying divergence theorem (again) to the first
term in the right hand side of the above equation, we get

Iε =

∫
|x|≥ε

∆

(
− 1

4π|x|

)
φ(x)dx−

∫
|x|=ε

∂
(
− 1

4π|x|

)
∂ν

φ(x)dS(x)+

∫
|x|=ε

− 1

4π|x|
∂φ

∂ν
dS(x).

(33)

Since ∆

(
− 1

4π|x|

)
= 0 for x 6= 0, the first term on the right hand side just

vanishes. Since φ ∈ C∞c (Rn), using spherical coordinates, we obtain∣∣∣∣∣
∫
|x|=ε

− 1

4π|x|
∂φ

∂ν
dS(x)

∣∣∣∣∣ ≤ C
∫
|x|=ε

1

|x|
dS(x)

≤ C

ε

∫
|x|=ε

dS(x)

= C
ε 4πε2 = 4πCε −−−→

ε→0
0.

(34)

Therefore we also get rid to this term at the limit. Finally, we need to show
that

lim
ε→0+

∫
|x|=ε

∂
(

1
4π|x|

)
∂ν

φ(x)dS(x) = φ(0). (35)

This is done by first noticing that

∂
(
− 1

4π|x|

)
∂ν

= ∇
(
− 1

4π|x|

)
· ν =

1

4π

x

|x|3
· −x
|x|

= − 1

4π|x|2
. (36)

Therefore

lim
ε→0+

∫
|x|=ε

∂
(
− 1

4π|x|

)
∂ν

φ(x)dS(x) = lim
ε→0+

∫
|x|=ε

− 1

4πε2
φ(x)dS(x) = −φ(0)

(37)
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The limit here is easy to justify since for instance we can write

inf
y∈S2

φ(εy)

∫
|x|=ε

1

4πε2
dS(x) ≤

∫
|x|=ε

1

4πε2
φ(x)dS(x) ≤ sup

y∈S2
φ(εy)

∫
|x|=ε

1

4πε2
dS(x)

m

inf
y∈S2

φ(εy) ≤
∫
|x|=ε

1

4πε2
φ(x)dS(x) ≤ sup

y∈S2
φ(εy)

(38)
and

The limit here is easy to justify since for instance we can write
inf
y∈S2

φ(εy) −−−→
ε→0

φ(0),

sup
y∈S2

φ(εy) −−−→
ε→0

φ(0). (39)

Hence

E(∆φ) = lim
ε→0+

Iε = lim
ε→0+

∫
|x|≥ε

∆

(
− 1

4π|x|

)
φ(x)dx = φ(0). (40)

Problem 8. We follow the hint. Let’s consider vj = χju (they are hence of
compact support). We want to show that

vj −−−−→
j→+∞

u in S ′(R3). (41)

But this means that, for all ψ ∈ S(Rn),

vj(ψ) −−−−→
j→+∞

u(ψ), (42)

or, defining ψj = χjψ,

vj(ψ) = χju(ψ) = u(ψj) −−−−→
j→+∞

u(ψ), (43)

Therefore, it suffices to show that ψj −−−−→
j→+∞

ψ in S(Rn). Indeed, for all j ≤ 1,

ψj is in S(Rn). Therefore ψ− χjψ = (1− χj)ψ is in S(Rn) and also Supp((1−
χj)ψ) ⊂ {|x| ≥ j}. Now let’s take α, β ∈ Np (p arbitrary) multi-indices. Since
by definition of χj , |∂βχj(x)| ≤ |∂βχ(x)| ≤ C1, then using the fact that ψ is
a Schwartz function (along with the Leibniz formula for instance) we conclude
that

|xα∂β(1− χj(x))ψ(x)| ≤ sup
{|x|≥j}

C

1 + |x|
≤ C

1 + j
−−−−→
j→+∞

0, (44)

which ends the proof of the first fact.

Now since vj are compactly supported, we know that Fvj is C∞, but we are not
assured that they rapidly decay at infinity. Therefore we define

gjk(ξ) = χk(ξ) (Fvj) (ξ) (45)
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Since vj has compact support and χj ∈ S(Rn), Pb5 allows us to conclude that
gjk ∈ S(Rn) (or in this case, we can simply invoke the fact that χj ∈ C∞c (Rn)).
Now using exactly the same proof as for the first step, we get that

ιgjk −−−−→
j→+∞

Fvj in S ′(R3). (46)

Finally, considering hjk = F−1gjk, a first step limit gives

hjk = F−1gjk −−−−→
j→+∞

F−1 (Fvj) = vj in S ′(R3), (47)

and a second step (first result) ends the proof:

vj −−−−→
j→+∞

u in S ′(R3). (48)
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