This is a closed book, closed notes, no calculators exam.

There are 5 problems. Solve all of them. Write your solutions to problems 1 and 2 in blue book #1, and your solutions to problems 3, 4 and 5 in blue book #2. Within each book, you may solve the problems in any order. Total score: 100 points.

Problem 1. (20 points) Solve the PDE
\[e^y u_x + u_y = u^2, \quad u(x,0) = x, \]
for small \(|y|\) (i.e. in a neighborhood of the \(x\) axis).

Problem 2.
(i) (12 points) On \(\mathbb{R}^n \times [0, \infty)_t \), solve the PDE
\[-\Delta^2 u = u_t, \quad u(x,0) = \phi(x), \]
where \(\Delta^2 = \Delta_x(\Delta_x u) \), when \(\phi \) is a given Schwartz function. You may leave your answer as the (partial) inverse Fourier transform of a function (depending on \(\phi \)).
(ii) (8 points) Solve the equation when \(n = 1, \phi(x) = 1 - x^2 \) for \(-1 < x < 1\), and \(\phi(x) = 0 \) otherwise. You may leave your answer as the (partial) inverse Fourier transform of a function you have evaluated explicitly.

Problem 3.
(i) (10 points) Suppose that \(u \in D'(\mathbb{R}^2) \). State the definition of \(\partial u / \partial x \), and show that this is consistent with the standard definition of partial derivatives if \(u \) is given by some \(f \in C^1(\mathbb{R}^2) \) (i.e. if \(u = \iota f \)).
(ii) (10 points) Suppose that \(u \) is given by a piecewise continuous function \(f \) on \(\mathbb{R}^2 \), i.e.
\[u(\phi) = \int_{\mathbb{R}^2} f(y)\phi(x,y) \, dx \, dy \]
for \(\phi \in C^\infty_c(\mathbb{R}^2) \). Show that \(\frac{\partial u}{\partial x} = 0 \).

Problem 4.
(i) (10 points) Find the general \(C^2 \) solution of the PDE
\[u_{xx} - 4u_{xt} + 3u_{tt} = 0. \]
(ii) (10 points) Solve the initial value problem with initial condition
\[u(x,2x) = \phi(x), \quad u_t(x,2x) = \psi(x), \]
with \(\phi, \psi \) given.

Problem 5. Consider the following equation on \(\mathbb{R} \times [0, \infty)_y \):
\[Lu = -au_{xx} + 2bu_{xy} + u_{yy} = 0, \]
where \(a, b \) are constant, and suppose that \(L \) is hyperbolic.
(i) (4 points) State what hyperbolicity means in terms of \(a \) and \(b \).
(ii) (9 points) Suppose that \(u(x,0) \) and \(u_y(x,0) \) vanish for \(|x| \geq R \) and \(u \) is \(C^2 \), and \(a > 0 \). Let
\[E(y) = \frac{1}{2} \int_\mathbb{R} (u_y(x,y)^2 + au_x(x,y)^2) \, dx. \]
Show that \(E \) is independent of \(y \). You may use without proof that this PDE has finite propagation speed. (This would be proved as in your homework problem.)
(iii) (7 points) Show that (among \(C^2 \) functions) the solution of the PDE \(Lu = 0 \) with \(u(x,0) = \phi(x), \ u_y(x,0) = \psi \), where \(\phi, \psi \) are given functions which vanish for \(|x| > R \), is unique.