MATH 220: Problem Set 3
Solutions

Problem 1. Let \(\psi \in C(\mathbb{R}) \) be given by:

\[
\psi(x) = \begin{cases}
0, & x < -1, \\
1 + x, & -1 < x < 0, \\
1 - x, & 0 < x < 1, \\
0, & x > 1,
\end{cases}
\]

so that it verifies \(\psi \geq 0, \) \(\psi(x) = 0 \) if \(|x| \geq 1 \) and \(\int_{\mathbb{R}} \psi(x)dx = 1. \)
Consider \((\psi_j)_{j \geq 1} \) constructed as \(\psi_j(x) = j\psi(jx), \) so that \(\psi_j(x) = 0 \) if \(|x| \geq 1/j \), and \(\int_{\mathbb{R}} \psi_j(x)dx = 1, \) for all \(j \geq 1. \)

(1) Let us show that \(\iota \psi_j \to \delta_0 \) in \(\mathcal{D}'(\mathbb{R}). \) By definition, it means that we need to prove that, for all \(\phi \in C_c^\infty(\mathbb{R}), \) \(\int_{\mathbb{R}} \psi_j(x)\phi(x)dx \to \delta_0(\phi) = \phi(0). \) So let’s prove that for every \(\epsilon > 0, \) there exists \(j_0 \) such that for all \(j \geq j_0, \)

\[
\left| \int_{\mathbb{R}} \psi_j(x)\phi(x)dx - \phi(0) \right| < \epsilon.
\]

Let \(\epsilon > 0 \) and \(\phi \in C_c^\infty(\mathbb{R}). \) Since \(\phi \) is continuous, there exists \(\eta > 0 \) such that for all \(|x| < \eta, \) \(|\phi(x) - \phi(0)| < \epsilon. \) Then consider \(j_0 \) such that \(1/j_0 < \eta. \) Since we know that \(\psi_j(x) = 0 \) for all \(|x| \geq 1/j, \) \(\int_{\mathbb{R}} \psi_j(x)dx = 1, \) and \(\psi_j(x) \geq 0 \) for all \(x, \) for all \(j \geq j_0 \) we have:

\[
\left| \int_{\mathbb{R}} \psi_j(x)\phi(x)dx - \phi(0) \right| = \left| \int_{\mathbb{R}} \psi_j(x)\phi(x)dx - \int_{\mathbb{R}} \psi_j(x)\phi(0)dx \right| \\
\leq \int_{-1/j}^{1/j} \psi_j(x) |\phi(x) - \phi(0)| dx \\
< \epsilon \int_{-1/j}^{1/j} \psi_j(x)dx = \epsilon.
\]

(2) Let \(\phi \in C_c^\infty(\mathbb{R}) \) be such that \(\phi(x) = 1 \) for all \(|x| < 1. \) Then, for \(j \geq 1, \)

\[
\int_{\mathbb{R}} \psi_j(x)^2 \phi(x)dx = \int_{-1/j}^{0} j^2(1 + jx)^2 dx + \int_{0}^{1/j} j^2(1 - jx)^2 dx = \frac{2j}{3}.
\]
Therefore, as \(j \to +\infty \), \(\int_{\mathbb{R}} \psi_j(x)^2 \phi(x)dx \to +\infty \), and \(\left\{ t_{\psi_j^2}(\phi) \right\}_{j=1}^{+\infty} \) does not converge.

Consequently, \(\left\{ t_{\psi_j^2}(\phi) \right\}_{j=1}^{+\infty} \) does not converge to any distribution since \(\left\{ t_{\psi_j^2}(\phi) \right\}_{j=1}^{+\infty} \) does not converge for the very \(\phi \) we exhibited.

(3) We have just shown that \(\psi_j \to \delta_0 \), but \(\left\{ t_{\psi_j^2}(\phi) \right\}_{j=1}^{+\infty} \) does not converge to any distribution. Therefore there is no continuous extension of the map \(Q : f \mapsto f^2 \) on \(C(\mathbb{R}) \) to \(D'(\mathbb{R}) \).

Problem 2. We consider the conservation law:

\[u_t + (f(u))_x = 0, \quad u(x,0) = \phi(x), \]

with \(f \in C^2(\mathbb{R}) \).

Since \(u \) is continuous and \(f \) is \(C^2 \), \(v = f'(u) \) is also continuous. Since \(u \) is \(C^1 \) apart from jump discontinuities in its first derivatives, away from the jumps, \(u_t \) (resp. \(u_x \)) is perfectly defined and continuous. Therefore, since \(f' \) is \(C^1 \), and away from the discontinuities, \(v_t = f''(u)u_t \) (resp. \(v_x = f''(u)u_x \)) is also continuous, \(v \) is \(C^1 \) apart from jump discontinuities in its first derivatives (the same ones as \(u \)). Therefore \(v \) has the same properties as \(u \). Moreover, we have, away from discontinuities:

\[v_t + vv_x = f''(u)u_t + f'(u)f''(u)u_x = f''(u)(u_t + f'(u)u_x) = f''(u)(u_t + (f(u))_x) = 0. \]

(6)

So \(v \) verifies the Burger’s equation (the Rankine-Hugoniot condition is vacuous: there are no shock since \(v \) is continuous).

If \(f'' > 0 \), \(f \) is strictly convex and \(f' \) is strictly increasing and therefore the inverse function \((f')^{-1} \) exists. We can therefore first solve for \(v \) from the Burger’s equation:

\[v_t + vv_x = 0, \quad v(x,0) = f'(\phi(x)), \]

and then \(u = (f')^{-1}(v) \) is solution of the original PDE.

Suppose now that \(u \) has a jump discontinuity. Then, according to the Rankine-Hugoniot condition:

\[\xi'(t) = \frac{f(u_+)-f(u_-)}{u_+ - u_-}. \]

(8)

If \(v \) could have been defined as previously, \(v \) would have the same discontinuity \((v = f'(u)) \) and again by Rankine-Hugoniot:

\[\xi'(t) = \frac{v_+^2 - v_-^2}{v_+ - v_-} = \frac{1}{2}(v_+ + v_-) = \frac{1}{2}(f'(u_+) + f'(u_-)). \]

(9)
But in general,
\[\frac{f(u_+) - f(u_-)}{u_+ - u_-} \neq \frac{1}{2} (f'(u_+) + f'(u_-)) \]
(consider for instance \(f(x) = e^x \)) and the statement is FALSE.

Problem 3. Consider Burger’s equation
\[u_t + uu_x = 0, \quad u(x,0) = \phi(x), \]
with initial condition
\[\phi(x) = \begin{cases} 0, & x < -1, \\ -1 - x, & -1 < x < 0, \\ -1 + x, & 0 < x < 1, \\ 0, & x > 1. \end{cases} \]

(1) To build the weak solution, it is very convenient to draw the characteristic curves.

In the Burger case, we know that the solution \(u \) is constant along the characteristic curves \(x_r(t) = \phi(r)t + r \). As long as the characteristic curves don’t intersect, we have:

- If \(r < -1 \), then \(\phi(r) = 0 \), which implies that the characteristic curves are
 \[x_r(t) = r, \quad r < -1, \]
 and the solution \(u(x,t) = 0 \) along those curves,

- If \(-1 < r < 0 \), then \(\phi(r) = -1 - r \), which implies that the characteristic curves are
 \[x_r(t) = (-1 - r)t + r, \quad -1 < r < 0, \]
 and the solution
 \[u(x,t) = -1 - r = -1 - \frac{x + t}{t - 1} = \frac{x + 1}{t - 1} \]
 along those curves.

- If \(0 < r < 1 \), then \(\phi(r) = -1 + r \), which implies that the characteristic curves are
 \[x_r(t) = (-1 + r)t + r, \quad 0 < r < 1, \]
 and the solution
 \[u(x,t) = -1 + r = -1 + \frac{x + t}{1 + t} = \frac{x - 1}{t + 1} \]
 along those curves.

- If \(r > 1 \), then \(\phi(r) = 0 \), which implies that the characteristic curves are
 \[x_r(t) = r, \quad r > 1, \]
 and the solution \(u(x,t) = 0 \) along those curves.
To sum up, we have that, for \(t \) small,

\[
 u(x,t) = \begin{cases}
 0, & x < -1, \\
 \frac{x + 1}{t - 1}, & -1 < x < -t, \quad (-1 < \frac{x + 1}{t - 1} < 0) \\
 \frac{x - 1}{t + 1}, & -1 < x < -t, \quad (0 < \frac{x - 1}{t + 1} < 1) \\
 0, & x > 1.
\end{cases}
\] (17)

Now, from the sketch of the characteristic curves and/or the condition \(-1 < x < -t\) of the solution, we can see that the characteristic curves don’t intersect while \(t < 1 \). Therefore the above solution is valid for \(t < 1 \).

The curves intersect at \(t = 1 \) Beyond that time, we therefore consider a weak solution satisfying the Rankine-Hugoniot condition. At the level of the discontinuity \(\xi(t) \), we have that \(u_-(\xi(t),t) = 0 \) and \(u_+(\xi(t),t) = \frac{\xi(t) - 1}{t + 1} \), and \(\xi(1) = -1 \). Therefore the Rankine-Hugoniot condition is

\[
 \xi'(t) = \frac{0 - \frac{1}{2} \left(\frac{\xi(t) - 1}{t + 1} \right)^2}{0 - \frac{\xi(t) - 1}{t + 1}} = \frac{1}{2} \frac{\xi(t) - 1}{t + 1}. \] (18)

Hence, \(\xi \) verifies the following ODE:

\[
 \begin{cases}
 \xi'(t) = \frac{1}{2} \frac{\xi(t) - 1}{t + 1}, \\
 \xi(1) = -1.
\end{cases} \] (19)

Solve it (say, by separation of variables) and you get \(\xi(t) = 1 - \sqrt{2(1+t)} \).

Therefore, for \(t \geq 1 \), the solution is

\[
 u(x,t) = \begin{cases}
 0, & -1 < x < 1 - \sqrt{2(1+t)}, \\
 \frac{x - 1}{t + 1}, & 1 - \sqrt{2(1+t)} < x < 1, \\
 0, & x > 1.
\end{cases}
\] (20)

(2) There are two cases for \(t \) to consider.

For \(0 \leq t < 1 \),

\[
 \int_{\mathbb{R}} u(x,t)dx = \int_{-1}^{-t} \frac{x + 1}{t - 1}dx + \int_{-t}^{1} \frac{x - 1}{t + 1}dx = -1. \] (21)

And for \(t > 1 \),

\[
 \int_{\mathbb{R}} u(x,t)dx = \int_{1 - \sqrt{2(1+t)}}^{1} \frac{x - 1}{t + 1}dx = -1. \] (22)

Therefore \(\int_{\mathbb{R}} u(x,t)dx \) is indeed constant.
Let us call $E(t) = \int_{\mathbb{R}} w(x,t)dx$, where $w = u^3$.

For $0 \leq t < 1$, we have

$$E(t) = \int_{\mathbb{R}} w(x,t)dx = \int_{-1}^{-t} (\frac{x+1}{t-1})^3 dx + \int_{-t}^{1} (\frac{x-1}{t+1})^3 dx = -\frac{1}{2}.$$ \hspace{1cm} (23)

So $E(t)$ is indeed constant before a shock develops, but for $t > 1$,

$$E(t) = \int_{\mathbb{R}} w(x,t)dx = \int_{1-\sqrt{2(1+t)}}^{1} (\frac{x-1}{t+1})^3 dx = -\frac{1}{t+1},$$ \hspace{1cm} (24)

and $E(t)$ is no longer a constant.

Let’s now explain what is going on here.

Following Problem 2, if we define $g(x) = \frac{3}{4}x^{4/3}$, we have that $u = g'(w)$.

From Problem 2, we know that $w_t + (g(w))_x = 0$. After the shock develops, we have for u:

$$\frac{d}{dt} \int_{\mathbb{R}} u(x,t)dx = \frac{d}{dt} \int_{\xi(t)}^{1} u(x,t)dx$$

$$= \int_{\xi(t)}^{1} \left(u_+ \right)_t - \xi'(t) u_+ (\xi(t),t)$$

$$= \int_{\xi(t)}^{1} \left(\frac{1}{2} u_+^2 \right)_x - \xi'(t) u_+ (\xi(t),t)$$

$$= \frac{1}{2} u_+ (\xi(t),t)^2 - \xi'(t) u_+ (\xi(t),t) = 0,$$ \hspace{1cm} (25)

from the Rankine-Hugoniot jump condition (remember $u_- = 0$).

Meanwhile for w we have:

$$\frac{d}{dt} \int_{\mathbb{R}} w(x,t)dx = \frac{d}{dt} \int_{\xi(t)}^{1} w(x,t)dx$$

$$= \int_{\xi(t)}^{1} \left(w_+ \right)_t - \xi'(t) w_+ (\xi(t),t)$$

$$= \int_{\xi(t)}^{1} \left(g(w_+) \right)_x - \xi'(t) w_+ (\xi(t),t)$$

$$= g(w_+(\xi(t),t)) - \xi'(t) w_+ (\xi(t),t) \neq 0,$$ \hspace{1cm} (26)

because w does not satisfy the same Rankine-Hugoniot condition.

Problem 4.
u_{xx} - u_{xy} - 2u_{yy} = 0. \hspace{1cm} (27)

We have \(A = \begin{pmatrix} 1 & -1/2 \\ -1/2 & -2 \end{pmatrix} \). Therefore \(\det(A) = -2 - 1/4 = -9/4 < 0 \), and \(Tr(A) = 1 + 2 = 3 < 0 \). Therefore the eigenvalues of \(A \) are non zero and of opposite signs: Hyperbolic PDE.

u_{xx} - 2u_{xy} + u_{yy} = 0. \hspace{1cm} (28)

We have \(A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \). Therefore \(\det(A) = 0 \). Therefore at least one of the eigenvalues of \(A \) is zero: Degenerate PDE.

u_{xx} + 2u_{xy} + 2u_{yy} = 0. \hspace{1cm} (29)

We have \(A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \). Therefore \(\det(A) = 2 - 1 = 1 > 0 \) and \(Tr(A) = 3 > 0 \). Therefore the eigenvalues of \(A \) are non zero and of the same sign: Elliptic PDE.

Problem 5.

1. Let’s find the general \(C^2 \) solution of the PDE

\[u_{xx} - u_{xt} - 6u_{tt} = 0, \] \hspace{1cm} (30)

by reducing it to a system of first order PDEs (by the way, this is an elliptic PDE).

We are looking for \(a, b, c, d \) that formally verify:

\[
\partial_{xx} - \partial_{xt} - 6\partial_{tt} = (a\partial_x + b\partial_t)(c\partial_x + d\partial_t) = ac\partial_{xx} + (ad + bc)\partial_{xt} + bd\partial_{tt}. \hspace{1cm} (31)
\]

So we get the (under-determined) system:

\[
\begin{cases}
ac = 1 \\
bd = -6, \\
ad + bc = -1,
\end{cases} \hspace{1cm} (32)
\]

From the first equation, let us simply take \(a = c = 1 \). Then the system reduces to

\[
\begin{cases}
d + b = -1 \\
bd = -6,
\end{cases} \hspace{1cm} (33)
\]

which gives \(b = 2 \) and \(d = -3 \).
Therefore we can write \(u_{xx} - u_{xt} - 6u_{tt} = 0 \) as \((\partial_x + 2\partial_t)(\partial_x - 3\partial_t)u = 0 \). Now let \(v = (\partial_x - 3\partial_t)u \). Then \(v \) verifies \(v_x + 2v_t = 0 \) (first order linear PDE!). And we know that the solution writes \(v(x,t) = h(t - 2x) \) for some \(h \in C^1 \). Now for \(u \) we have the system:

\[
u_x - 3u_t = h(t - 2x).\quad (34)
\]

Using the method of characteristics, we get the following equations:

\[
\begin{cases}
 x'(s) = 1, & x_r(0) = 0, \\
 t'(s) = -3, & t_r(0) = r, \\
 v'(s) = h(t_r(s) - 2x_r(s)), & v_r(0) = \phi(r),
\end{cases}
\quad (35)
\]

for some function \(\phi \in C^2 \). Therefore we have \(x_r(s) = s, t_r(s) = -3s + r \), and

\[
v'(s) = h(-3s + r - 2s) = h(-5s + r), \quad (36)
\]

and by integrating from \(s = 0 \), we get:

\[
v_r(s) = \int_0^s h(-5s' + r)ds' + \phi(r) = -\frac{1}{5} \int_r^{t+3x} h(y)dy + \phi(r), \quad (37)
\]

after a change of variables. Now, since we have \(s = x \) and \(r = t + 3x \), we finally get:

\[
u(x,t) = \frac{1}{5} \int_{t-2x}^{t+3x} h(y)dy + \phi(t + 3x) = f(t + 3x) + g(t - 2x), \quad (38)
\]

for some \(f, g \in C^2 \).

Reciprocally, we verify that \(u \) of the form \(u(x,t) = f(t + 3x) + g(t - 2x) \) for \(f, g \in C^2 \) indeed solves the PDE.

(2) For an arbitrary \(\phi \in C^\infty_c(\mathbb{R}^2) \) we have to show that

\[
u(\phi_{xx} - \phi_{xt} - 6\phi_{tt}) = v(\phi_{xx} - \phi_{xt} - 6\phi_{tt}) + w(\phi_{xx} - \phi_{xt} - 6\phi_{tt}) = 0. \quad (39)
\]

But from Problem 2 of Pset 2, we have:

\[
v(\phi_{xx} - \phi_{xt} - 6\phi_{tt}) = v((\partial_x - 3\partial_t)(\phi_x + 2\phi_t)) = 0, \quad (40)
\]

and similarly,

\[
w(\phi_{xx} - \phi_{xt} - 6\phi_{tt}) = w((\partial_x + 2\partial_t)(\phi_x - 3\phi_t)) = 0. \quad (41)
\]
Problem 6. Let us solve (in the strong sense):

\[
\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \begin{cases}
 u_{xx} + 3u_{xy} - 4u_{yy} = xy, \\
 u(x, x) = \sin x, \quad u_x(x, x) = 0.
\end{cases} \tag{42}
\]

Same strategy here, we reduce it to a system of first order PDEs (by the way, this is a hyperbolic PDE!).

We are looking for \(a, b, c, d\) that formally verify:

\[
\partial_{xx} + 3\partial_{xy} - 4\partial_{yy} = (a\partial_x + b\partial_y)(c\partial_x + d\partial_y) = ac\partial_{xx} + (ad + bc)\partial_{xy} + bd\partial_{yy}. \tag{43}
\]

So we get the (under-determined) system:

\[
\begin{cases}
 ac = 1 \\
 ad + bc = 3 \\
 bd = -4.
\end{cases} \tag{44}
\]

From the first equation, let us simply take \(a = c = 1\). Then the system reduces to

\[
\begin{cases}
 d + b = 3 \\
 bd = -4,
\end{cases} \tag{45}
\]

which gives, say, \(b = -1\) and \(d = 4\).

Therefore we can write \(u_{xx} + 3u_{xy} - 4u_{yy} = 0\) as \((\partial_x + 4\partial_y)u = 0\). Now let \(v = (\partial_x + 4\partial_y)u\). Then \(v\) verifies \(v_x - v_y = xy\) (first order semilinear PDE!), and \((u_x + u_y)|_{(x, x)} = \sin'(x) = \cos(x)\), \(u_x(x, x) = 0\) imply that \(u_y(x, x) = \cos(x)\) and \(v(x, x) = 4\cos(x)\). Therefore \(v\) satisfies the following PDE:

\[
\begin{cases}
 v_x - v_y = xy, \\
 v(x, x) = 4\cos(x).
\end{cases} \tag{46}
\]

The ODEs for the characteristics are then:

\[
\begin{cases}
 x'_r(s) = 1, \\
 y'_r(s) = -1, \\
 v'_r(s) = x_r(s)y_r(s), \quad v_r(0) = 4\cos(r).
\end{cases} \tag{47}
\]

After solving, we get:

\[
\begin{cases}
 x_r(s) = s + r, \\
 y_r(s) = r - s, \\
 v_r(s) = v^2s - \frac{s^3}{3} + 4\cos(r).
\end{cases} \tag{48}
\]

Therefore we get the PDE for \(u\):

\[
\begin{cases}
 u_x + 4u_y = v(x, y) = \left(\frac{x + y}{2}\right)^2 \left(\frac{x - y}{2}\right) + \frac{1}{3} \left(\frac{x - y}{2}\right)^3 + 4\cos\left(\frac{x + y}{2}\right), \\
 u(x, x) = \sin(x).
\end{cases} \tag{49}
\]
Writing once again the characteristic ODEs for the PDE, we get:

\[\begin{align*}
 x'_r(s) &= 1, & x_r(0) &= r, \\
 y'_r(s) &= 4, & y_r(0) &= r, \\
 v'_r(s) &= v(x_r(s), y_r(s)), & v_r(0) &= \sin(r). \\
\end{align*} \tag{50} \]

After solving, we get:

\[\begin{align*}
 x_r(s) &= s + r, \\
 y_r(s) &= 4s + r, \\
 v_r(s) &= \sin(r) + \int_0^s \left(-\frac{1}{3} \left(-\frac{3}{2} \tau \right)^3 - \left(\frac{5\tau + 2r}{2} \right)^2 \frac{3\tau}{2} + 4\cos \left(\frac{5\tau + 2r}{2} \right) \right) d\tau \\
 &= \frac{9}{32} s^4 - \frac{75}{32} s^4 - \frac{5}{2} s^3 r - \frac{3}{4} s^2 r^2 + \frac{8}{5} \sin \left(\frac{5s + 2r}{2} \right) - \frac{3}{5} \sin (r). \tag{51} \end{align*} \]

Therefore (and finally):

\[u(x, t) = -\frac{1}{16} \left(\frac{y - x}{3}\right)^2 \left(\frac{5x + y}{3}\right) \left(\frac{5y + 13x}{3}\right) + \frac{8}{5} \sin \left(\frac{x + y}{2}\right) - \frac{3}{5} \sin \left(\frac{4x - y}{3}\right). \tag{52} \]

Problem 7. Let’s solve the wave equation on the line:

\[u_{tt} - c^2 u_{xx} = 0, \quad u(x, 0) = \phi(x), \quad u_t(x, 0) = \psi(x), \tag{53} \]

with

\[\phi(x) = \begin{cases}
 0, & x < -1, \\
 1 + x, & -1 < x < 0, \\
 1 - x, & 0 < x < 1, \\
 0, & x > 1, \end{cases} \tag{54} \]

and

\[\psi(x) = \begin{cases}
 0, & x < -1, \\
 2, & -1 < x < 1, \\
 0, & x > 1. \end{cases} \tag{55} \]

We know from the course (method of characteristics) that the solution is:

\[u(x, t) = \frac{1}{2} \left(\phi(x + ct) + \phi(x - ct)\right) + \frac{1}{2c} \int_{x - ct}^{x + ct} \psi(y) dy. \tag{56} \]

Now, notice first that since \(c, t \geq 0 \), then \(x - ct \leq x + ct \). As you can see in the figure, there are 10 cases to consider for the solution:

1. If \(x + ct < -1 \) and \(x - ct < -1 \) (domain 1), then \(u(x, t) = 0 \).
2. If $-1 \leq x + ct < 0$ and $x - ct < -1$ (domain 2), then
 \[
u(x,t) = \frac{1}{2} (1 + x + ct + 0) + \frac{1}{2c} \int_{-1}^{x+ct} 2dy = \left(\frac{1}{2} + \frac{1}{c} \right) (1 + x + ct). \tag{57}\]

3. If $0 \leq x + ct < 1$ and $x - ct < -1$ (domain 3), then
 \[
u(x,t) = \frac{1}{2} (1 - x - ct + 0) + \frac{1}{2c} \int_{-1}^{x+ct} 2dy = \frac{1}{2} (1 - x - ct) + \frac{1}{c} (1 + x + ct). \tag{58}\]

4. If $1 \leq x + ct$ and $x - ct < -1$ (domain 4), then
 \[
u(x,t) = 0 + \frac{1}{2c} \int_{-1}^{1} 2dy = \frac{2}{c}. \tag{59}\]

5. If $-1 \leq x + ct < 0$ and $-1 < x - ct < 0$ (domain 5), then
 \[
u(x,t) = \frac{1}{2} (1 + x + ct + 1 + x - ct) + \frac{1}{2c} \int_{-ct}^{x+ct} 2dy = 1 + x + 2t. \tag{60}\]

6. If $0 \leq x + ct < 1$ and $-1 < x - ct < 0$ (domain 6), then
 \[
u(x,t) = \frac{1}{2} (1 - x - ct + 1 + x - ct) + \frac{1}{2c} \int_{-ct}^{x+ct} 2dy = 1 - ct + 2t. \tag{61}\]

7. If $1 \leq x + ct$ and $-1 \leq x - ct < 0$ (domain 7), then
 \[
u(x,t) = \frac{1}{2} (0 + 1 + x - ct) + \frac{1}{2c} \int_{-ct}^{1} 2dy = \frac{1}{2} (1 + x - ct) + \frac{1}{c} (1 - x + ct). \tag{62}\]

8. If $0 \leq x + ct < 1$ and $0 \leq x - ct < 1$ (domain 8), then
 \[
u(x,t) = \frac{1}{2} (1 - x - ct + 1 - x + ct) + \frac{1}{2c} \int_{-ct}^{x+ct} 2dy = 1 - x + 2t. \tag{63}\]

9. If $1 \leq x + ct$ and $0 \leq x - ct < 1$ (domain 9), then
 \[
u(x,t) = \frac{1}{2} (1 - x - ct) + \frac{1}{2c} \int_{-ct}^{1} 2dy = \frac{1}{2} (1 + x - ct) + \frac{1}{c} (1 - x + ct). \tag{64}\]

10. If $1 \leq x + ct$ and $1 \leq x - ct$ (domain 10), then $\nu(x,t) = 0$.

Finally, as we can now see, $\nu(x,t)$ vanishes in region (1) and (10). Since $\phi(x) = 0$ and $\psi(x) = 0$ in $|x| > 1$, this result corresponds to Huygens’ principle. Moreover, $\nu(x,t)$ is C^1 except on the lines $x + ct = -1$, $x + ct = 0$, $x + ct = 1$, $x - ct = -1$, $x - ct = 0$ and $x - ct = 1$. Since $\phi(x)$ and $\psi(x)$ are C^1 everywhere except at $x = -1, 0, 1$, this result corresponds to the propagation of singularities: $\nu(x,t)$ is C^1 near (x,t) if ϕ and ψ are such near $x \pm ct$.
