Recall the definition of an inner product space; see Appendix A.8 of the textbook.

Definition 1 An inner product space V is a vector space over \mathbb{R} with a map $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ such that

1. (Positive definiteness) $\langle x, x \rangle \geq 0$ for all $x \in V$, with $\langle x, x \rangle = 0$ if and only if $x = 0$.
2. (Linearity in first slot) $\langle (\lambda x + \mu y), z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$ for all $x, y, z \in V$, $\lambda, \mu \in \mathbb{R}$.
3. (Symmetry) $\langle x, y \rangle = \langle y, x \rangle$.

One often writes $x \cdot y = \langle x, y \rangle$ for an inner product. The standard dot product on \mathbb{R}^n is an example of an inner product:

$$x \cdot y = \sum_{j=1}^{n} x_j y_j, \ x = (x_1, \ldots, x_n), \ y = (y_1, \ldots, y_n);$$

another one is, on $V = C([0,1])$ (continuous real valued functions on $[0,1]$) which we do not ‘officially know’ yet,

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx.$$

There is an extension of the definition when the underlying field is \mathbb{C}; the only change is that symmetry is replaced by Hermitian symmetry, namely $\langle x, y \rangle = \overline{\langle y, x \rangle}$, where the bar denotes complex conjugate. Complex examples are \mathbb{C}^n:

$$x \cdot y = \sum_{j=1}^{n} x_j \overline{y_j}, \ x = (x_1, \ldots, x_n), \ y = (y_1, \ldots, y_n);$$

with the complex conjugate needed for

$$x \cdot x = \sum_{j=1}^{n} |x_j|^2 \geq 0,$$

$= 0$ if and only if $x = 0$ (i.e. $x_j = 0$ for all j), and for $V = C([0,1]; \mathbb{C})$ (continuous complex valued functions on $[0,1]$),

$$\langle f, g \rangle = \int_0^1 f(x)\overline{g(x)} \, dx.$$

Note that when the field is \mathbb{R}, symmetry plus linearity in the first slot give linearity in the second slot as well. (If the field is \mathbb{C}, they give conjugate linearity in the second slot, i.e. $\langle z, (\lambda x + \mu y) \rangle = \overline{\lambda} \langle z, x \rangle + \overline{\mu} \langle z, y \rangle$ for all $x, y, z \in V$, $\lambda, \mu \in \mathbb{C}$.) This linearity also gives $\langle 0, x \rangle = 0$ for all $x \in V$, as follows by writing $0 = 0 \cdot 0$ (with the first 0 on the right hand side being the real number, all others are vectors, which we temporarily denote by 0_V for clarity):

$$\langle 0_V, v \rangle = \langle 0 \cdot 0_V, v \rangle = 0 \langle 0_V, v \rangle = 0, \ v \in V,$$

and by symmetry then

$$\langle v, 0_V \rangle = \langle 0_V, v \rangle = 0,$$

with Hermitian symmetry working similarly in the complex case.

In inner product spaces one defines the norm (which is just a word at this moment) by

$$\|x\| = \sqrt{\langle x, x \rangle},$$
with the square root being the non-negative square root of a non-negative number (the latter being the case by positive definiteness). Note that $\|x\| = 0$ if and only if $x = 0$. We also note a useful property of $\|\cdot\|:$

$$\|cv\|^2 = \langle cv, cv \rangle = c\langle v, cv \rangle = c^2\langle v, v \rangle = |c|^2\|v\|^2, \ c \in \mathbb{R}, \ v \in V,$$

so

$$\|cv\| = |c| \|v\|. \quad (1)$$

This property of $\|\cdot\|$ is called absolute homogeneity (of degree 1). The same statement, (1), is valid if the field is \mathbb{C}, but in that case the proof is

$$\|cv\|^2 = \langle cv, cv \rangle = c\langle v, cv \rangle = c\bar{c}\langle v, v \rangle = |c|^2\|v\|^2, \ c \in \mathbb{C}, \ v \in V.$$

One concept that is tremendously useful in inner product spaces is orthogonality:

Definition 2 Suppose V is an inner product space. For $v, w \in V$ we say that v is orthogonal to w if $\langle v, w \rangle = 0$.

Note that $\langle v, w \rangle = 0$ if and only of $\langle w, v \rangle = 0$, so v is orthogonal to w if and only if w is orthogonal to v—so we often say simply that v and w are orthogonal.

As an illustration of its use, let’s prove Pythagoras’ theorem:

Lemma 1 Suppose V is an inner product space, $v, w \in V$ and v and w are orthogonal. Then

$$\|v + w\|^2 = \|v\|^2 + \|w\|^2 = \|v - w\|^2.$$

Proof: Since $v - w = v + (-w)$, the statement about $v - w$ follows from the statement for $v + w$ and $\|v - w\| = \|w\|$. Now,

$$\langle v + w, v + w \rangle = \langle v, v + w \rangle + \langle w, v + w \rangle = \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle = \langle v, v \rangle + \langle w, w \rangle$$

by the orthogonality of v and w, proving the result. \[\square\]

One use of orthogonality is the following:

Lemma 2 Suppose $v, w \in V$, $w \neq 0$. Then there exist unique $v_\parallel, v_\perp \in V$ such that $v = v_\parallel + v_\perp$, $v_\parallel = cw$ for some $c \in \mathbb{R}$ (or \mathbb{C} if the field is \mathbb{C}) and $\langle v_\perp, w \rangle = 0$; see Figure 1.

![Figure 1: The decomposition $v = v_\parallel + v_\perp$.](image-url)
Proof: If \(v = v_\parallel + v_\perp \) then taking the inner product with \(w \) and using \(v_\parallel = cw \) we deduce

\[
\langle v, w \rangle = \langle cw, w \rangle + \langle v_\perp, w \rangle = c\|w\|^2,
\]
so as \(w \neq 0 \),

\[
c = \frac{\langle v, w \rangle}{\|w\|^2}.
\]

Thus, \(v_\parallel = cw \) and \(v_\perp = v - cw \), giving uniqueness.

On the other hand, if we let

\[
c = \frac{\langle v, w \rangle}{\|w\|^2}, \quad v_\parallel = cw, \quad v_\perp = v - cw,
\]
then \(v_\perp + v_\parallel = v \) and \(v_\parallel = cw \) are satisfied, so we merely need to check \(\langle v_\perp, w \rangle = 0 \). But

\[
\langle v_\perp, w \rangle = \langle v, w \rangle - c\langle w, w \rangle = \langle v, w \rangle - \frac{\langle v, w \rangle}{\|w\|^2}\|w\|^2 = 0,
\]
so the desired vectors \(v_\perp \) and \(v_\parallel \) indeed exist. \(\square \)

One calls \(v_\parallel \) the orthogonal projection of \(v \) to the span of \(w \).

In order to make this a useful tool, we need to be able to estimate the inner product using the norm. This is achieved by the Cauchy-Schwarz inequality.

Lemma 3 (Cauchy-Schwarz) In an inner product space \(V \),

\[
|\langle v, w \rangle| \leq \|v\|\|w\|, \quad v, w \in V.
\]

Remark 1 In the case of real-valued function spaces, Cauchy-Schwarz says explicitly that

\[
\left| \int_0^1 f(x)g(x)\,dx \right| \leq \sqrt{\int_0^1 f(x)^2\,dx} \sqrt{\int_0^1 g(x)^2\,dx}.
\]

Proof: If \(w = 0 \), then both sides vanish, so we may assume \(w \neq 0 \). Write \(v = v_\parallel + v_\perp \) as in Lemma 2, so

\[
v_\parallel = cw, \quad c = \frac{\langle v, w \rangle}{\|w\|^2}.
\]

Then by Pythagoras’ theorem, using \(\langle v_\parallel, v_\perp \rangle = c\langle w, v_\perp \rangle = 0 \),

\[
\|v\|^2 = \|v_\parallel\|^2 + \|v_\perp\|^2 \geq \|v_\parallel\|^2 = |c|^2\|w\|^2 = \frac{\|v, w\|^2}{\|w\|^2}.
\]

Multiplying through by \(\|w\|^2 \) and taking the non-negative square root completes the proof of the lemma. \(\square \)

A useful consequence of the Cauchy-Schwarz inequality is the triangle inequality for the norm:

Lemma 4 In an inner product space \(V \),

\[
\|v + w\| \leq \|v\| + \|w\|.
\]
Proof: One only needs to prove the equivalent estimate where one takes the square of both sides:

\[\|v + w\|^2 \leq \|v\|^2 + 2\|v\|\|w\| + \|w\|^2. \]

But

\[\|v + w\|^2 = \langle v + w, v + w \rangle = \|v\|^2 + \langle v, w \rangle + \langle w, v \rangle + \|w\|^2 \leq \|v\|^2 + 2\|v\|\|w\| + \|w\|^2, \]

where the last inequality is the Cauchy-Schwarz inequality. □

In general, if one has a vector space \(V \), one defines the notion of a norm on it as follows:

Definition 3 Suppose \(V \) is a vector space. A norm on \(V \) is a map

\[\|\cdot\| : V \rightarrow \mathbb{R} \]

such that

1. (positive definiteness) \(\|v\| \geq 0 \) for all \(v \in V \), and \(v = 0 \) if and only if \(\|v\| = 0 \).

2. (absolute homogeneity) \(\|cv\| = |c|\|v\| \), \(v \in V \), and \(c \) a scalar (so \(c \in \mathbb{R} \) or \(c \in \mathbb{C} \), depending on whether \(V \) is real or complex),

3. (triangle inequality) \(\|v + w\| \leq \|v\| + \|w\| \) for all \(v, w \in V \).

Thus, Lemma [4] shows that the map \(\|\cdot\| : V \rightarrow \mathbb{R} \) we defined on an inner product space is indeed a norm in this sense, i.e. our use of the word norm was justified.

Some examples of a normed vector space where the norm does not come from an inner product are:

1. \(V = \mathbb{R}^n \), and \(\|(x_1, \ldots, x_n)\|_1 = \sum_{j=1}^n |x_j| \). (The triangle inequality follows from that on \(\mathbb{R} \), the others are immediate.)

2. \(V = \mathbb{R}^n \), and \(\|(x_1, \ldots, x_n)\|_\infty = \max\{|x_j| : j = 1, \ldots, n\} \). (The triangle inequality comes from the fact that for each \(j \), \(|x_j + y_j| \leq |x_j| + |y_j| \), so this is also true for any \(j \) maximizing \(|x_j + y_j| \), so using that \(j \), \(\|x + y\|_\infty = |x_j + y_j| \leq |x_j| + |y_j| \leq \|x\|_\infty + \|y\|_\infty \).

Norms will play an important role when we get to analysis.

Before actually turning to inner products, let us discuss sums of subspaces, returning to arbitrary underlying fields.

Definition 4 If \(Z \) is a vector space, \(V, W \) subspaces, \(V + W = \{v + w : v \in V, w \in W\} \subset Z \).

One easily checks that \(V + W \) is a subspace of \(Z \).

Definition 5 One says that such a sum \(V + W \) in \(Z \) is direct if \(V \cap W = \{0\} \). In this case, one writes \(V + W = V \oplus W \).

Given a subspace \(V \) of \(Z \), another subspace \(W \) is called complementary to \(V \) if \(V + W = Z \), where the sum is direct.

Note that \(W \) complementary to \(V \) is equivalent to \(V \) complementary to \(W \) by symmetry of the definition.
Lemma 5 If V is a subspace of Z, and W is complementary to V, then for any $z \in Z$ there exist unique $v \in V$, $w \in W$ such that $v + w = z$.

Proof: Existence of v, w as desired follows from $V + W = Z$. On the other hand, if $v + w = v' + w'$ for some $v, v' \in V$, $w, w' \in W$ then $v - v' = w' - w$, and the left hand side is in V, the right hand side is in W, so they are both in $V \cap W = \{0\}$. Thus, $v = v'$, $w = w'$ as desired. □

Since bases will play an important role from now on, from this point on we assume that all vector spaces under consideration are finite dimensional. Some of the results below have more sophisticated infinite dimensional analogues though.

Note that any subspace V of a vector space Z has a complementary subspace. Indeed, let \{v_1, \ldots, v_k\} be a basis of V; complete this to a basis \{v_1, \ldots, v_n\} of Z, $n \geq k$, and let $W = \text{Span}\{v_{k+1}, \ldots, v_n\}$. Then $V + W = Z$ since the v_j form a basis, while $V \cap W = \{0\}$ since otherwise $\sum_{j=1}^{k} c_j v_j = \sum_{j=k+1}^{n} d_j v_j$ for some choice of c_j, d_j, not all 0, and rearranging and using the linear independence of the v_j provides a contradiction.

We also have:

Lemma 6 If V is a subspace of Z and W is complementary to V, then $\dim V + \dim W = \dim Z$.

Proof: Let \{v_1, \ldots, v_k\} be a basis of V, \{w_1, \ldots, w_l\} a basis of W. We claim that \{v_1, \ldots, v_k, w_1, \ldots, w_l\} is a basis of Z, hence $\dim Z = k+l = \dim V + \dim W$. To see this claim, note that $\text{Span}\{v_1, \ldots, v_k, w_1, \ldots, w_l\} = Z$ since every element z of Z can be written as $v + w$, $v \in V$, $w \in W$, and v, resp. w, are linear combinations of the corresponding basis vectors. Moreover, if $\sum_{j=1}^{k} c_j v_j + \sum_{i=1}^{l} d_i w_i = 0$ for some choice of c_j, d_i, not all zero, then rearranging gives $\sum_{j=1}^{k} c_j v_j = - \sum_{i=1}^{l} d_i w_i \in V \cap W$, so both vanish, which contradicts either the linear independence of the v_j or those of the w_i. □

Now, if Z is an inner product space (hence the field is \mathbb{R}, though \mathbb{C} would work similarly) and V is a subspace, one lets $V^\perp = \{w \in Z : v \in V \Rightarrow v \cdot w = 0\}$.

With this definition it is immediate that $V \cap V^\perp = \{0\}$: if $v \in V \cap V^\perp$, then $v \cdot v = 0$, thus $v = 0$. Proceeding as in Section 1.8 of the textbook, one shows that $V + V^\perp = Z$, so in particular any $z \in Z$ can be uniquely written as $z = v + w$, $v \in V$, $w \in V^\perp$. Thus, in an inner product space there are canonical complements, V^\perp (called orthocomplement); in a general spaces there are many choices, none of which is preferred.

Now, if V is an inner product space and e_1, \ldots, e_n is an orthonormal basis of V, i.e. $e_i \cdot e_j = 0$ if $i \neq j$, $e_i \cdot e_i = 1$, then it is very easy to express any $v \in V$ as the linear combination of the basis vectors. Namely, we know that one can write

$$v = \sum_{j=1}^{n} c_j e_j$$

for some choice of $c_j \in \mathbb{R}$; taking the inner product with e_i gives

$$v \cdot e_i = \sum_{j=1}^{n} c_j (e_j \cdot e_i) = c_i,$$

i.e. $c_i = v \cdot e_i$.

We postpone for now the existence of orthonormal bases, since for \mathbb{R}^n the standard one is orthonormal; however, this can easily be shown in the same manner bases are constructed by considering a maximal orthonormal subset of a vector space – note that an orthonormal collection of vectors is automatically
linearly independent, as follows by taking the inner product with the various vectors. (Later on, in Section 3.5, the Gram-Schmidt procedure will produce an orthonormal basis from any given basis.)

Now consider linear maps $T : V \rightarrow W$ where V, W are inner product spaces. If e_1, \ldots, e_n, resp. f_1, \ldots, f_n are orthonormal bases of V, resp. W, then the matrix of T in this basis is very easy to find: recall that the ij entry is a_{ij} if $Te_j = \sum_{i=1}^{m} a_{ij} f_i$. Thus, by the above argument (applied in W),

$$a_{ij} = f_i \cdot Te_j.$$

We claim that there is a unique linear map S such that $Tv \cdot w = v \cdot Sw$ for all $v \in V, w \in W$. To see uniqueness, notice that the matrix of S relative to the respective orthonormal bases has ij entry $e_i \cdot Sf_j$, while that of T has lk entry $f_l \cdot Te_k$. If S has the desired property, $e_i \cdot Sf_j = Sf_j \cdot e_i = f_j \cdot Te_i$, so the ij entry of the matrix of S is the ji entry of the matrix of T, hence is determined by T. This also gives existence: if S is defined to have ij matrix entry $f_j \cdot Te_i$, so

$$S \sum_{j=1}^{m} x_j f_j = \sum_{j=1}^{m} x_j \sum_{i=1}^{n} (f_j \cdot Te_i) e_i,$$

then expanding vectors v, w in the respective bases $v = \sum v_i e_i$, $w = \sum w_j f_j$,

$$v \cdot Sw = \sum_{i=1}^{n} \sum_{j=1}^{m} v_i w_j (f_j \cdot Te_i) = Tv \cdot w.$$

The map S is called the adjoint or transpose of T, denoted by T^T or T^*.

Note that if $S = T^T$ then $S^T = T$, directly from the defining property of the adjoint.

The immediate property of T^T and T is the following:

Lemma 7 We have $N(T^T) = (\text{Ran } T)^\perp$.

Proof: We have

$$w \in (\text{Ran } T)^\perp \iff w \cdot Tv = 0 \text{ for all } v \in V \iff T^T w \cdot v = 0 \text{ for all } v \in V.$$

But the last statement is equivalent to $T^T w = 0$, with one implication being immediate, and for the other taking $v = T^T w$ shows $||T^T w||^2 = 0$, so $T^T w = 0$. This is exactly the statement that $w \in N(T^T)$ as claimed. \hfill \square

This lemma can be applied with T^T in place of T, yielding $N(T) = \text{Ran}(T^T)^\perp$. These give:

$$\dim \text{Ran}(T^T) = \dim V - \dim N(T) = \dim \text{Ran}(T),$$

where the last equality follows from the rank-nullity theorem. This is exactly the equality of the column-rank and the row-rank of T.