Lecture 14:
The broad spectrum of medical and healthcare robotics

Allison Okamura
Stanford University
Growing Healthcare Challenges

- **Regaining function & retaining independence**
 - 1 in 5 children is overweight
 - 1M Parkinson’s patients, 50,000 new/year, 750,000 strokes/year in US alone

- **Caretaking for staying at home/aging-in-place**
 - Vets with PTSD, TBI, amputations, etc.
 - Millions suffer from isolation and depression

- **Individualized learning and training for special needs**
 - 6.6M special ed students
 - 3.5M children with ADHD
 - 6.2 to 7.5M people with mental retardation

- **A surging need for caregivers in-home and in-institution**

Maja Mataric (USC)
Past and anticipated percentage of the population above age 65

Achievements and Opportunities

BY ALLISON M. OKAMURA, MAJA J. MATARIC, AND HENRIK I. CHRISTENSEN

In contrast to the industrial robots, first developed 50 years ago, to automate dirty, dull, and dangerous tasks, today’s medical and health-care robots are designed for entirely different environments and tasks—those that involve direct interaction with human users in the surgical theater, the rehabilitation center, and the family room. Commercial and research interest in medical and health-care robotics has seen substantial growth in the last decade. Telerobotic systems are being routinely used to perform surgery, resulting in shorter recovery times and more reliable outcomes in some procedures. Robotic rehabilitation systems are successfully delivering physical and occupational therapy, enabling a greater intensity of treatment that is continuously adaptable to a patient’s needs. Socially assistive robotic (SAR) systems are being developed for in-clinic and in-home use in physical, cognitive, and social-exercise coaching and monitoring. Technological advances in robotics have the potential to stimulate the development of new treatments for a wide variety of diseases and disorders, improve both the standard and accessibility of care, and enhance patients’ health outcomes. The aim of this article is to propose some of the most important capabilities and technical achievements of medical and health-care robotics needed to improve human health and well-being. We describe application areas, societal drivers, motivating scenarios, desired system capabilities, and fundamental research areas that should be considered in the design of medical and health-care robots.

Design Considerations

Although robots are already beginning to affect human health through clinical use, further research and commercial success will be facilitated through careful consideration of societal drivers for

For a big-picture review, see:

For more extensive reading, see:

Application areas for medical and healthcare robotics

• **medicine**: the application of science and technology to treat and prevent injury and disease
 • surgery, interventional radiology
 • physical and occupational therapy
 • replacing lost limb function

• **health care**: the availability of treatment and prevention of illness
 • therapy oversight
 • coaching and motivation
In addition...

• Creating a robotic system that mimics biology has been used as a way to study and test how the human body and brain functions.

• Robots can be used to acquire data from biological systems with unprecedented accuracy, enabling us to gain quantitative insights into both physical and social behavior.
Societal drivers: Economics

What economic impact could result from increased use of robotics in medicine and healthcare?
Societal drivers: Economics

• faster recovery times lead to improved worker productivity
• new technologies improve risk-benefit and cost-benefit ratios
• lower costs to society by decreasing impact on families, caregivers, and employers
• training to lower number of medical errors and lawsuits
• objective approaches for accountability and certification/assessment
Societal drivers: Access

What how can robotics increase the access to medicine and healthcare?
Societal drivers: Access

- **affordability**
 - robots could reduce the cost of clinical rehabilitative care
 - in-home systems for motivating and coaching physical and cognitive exercise for prevention and rehabilitation
 - caretaking of the elderly to promote aging in place (i.e., at home), delay the onset of dementia, and provide companionship to mitigate isolation and depression

- **location**
 - natural and man-made disasters
 - battlefield; remote working environments (space, undersea, underground)
 - rural populations
physically assistive robots
Movement Therapy and Assistance

• Over 25% of U.S. population has some functional physical limitation that affects normal living

• 6.5M people in the US have had a stroke (by 2050, cost projected to be $2.2 Trillion)
Wheelchair robots

ibot (Dean Kamen)

Wheelchair-Mounted Robotic Arm (Waseda University)
Household/ADL helpers

Robots to aid the sick and elderly
(Kemp lab, Georgia Tech)
robotic replacement of diminished/lost function (i.e., prosthetics and orthotics)
robotic replacement of diminished/lost function (i.e., prosthetics and orthotics)

Challenges include:
• cosmesis
• neural interfaces
• control
• communicating sensory information
• level of autonomy
• size and weight vs. functionality
socially assistive robots

slides provided by Maja Mataric
Socially Assistive Robotics

Problem: cost/population size and growth trends

Need: personalized medium to long-term care

Part of the solution: human-centered robotics to improve health outcomes

- Monitoring
- Coaching/training
- Motivation
- Companionship/socialization

Maja Mataric (USC)
Imagine a robot …

We call this robot Trainer / Coach

… that can complement a physical therapist/coach
… that is enjoyable to interact with
… that minimizes embarrassment
… that is tirelessly devoted 24-7
… that can get doctor or nurse help whenever needed
… that helps numerous people regain their independence
Imagine a robot...

We call this robot Shepherd / Guide

... that assists as a personalized caregiver

... that serves as eyes and ears

... that is easy to command and interact with

... that is unobtrusive

... that encourages socialization

... that increases human quality of life
Imagine a robot …

… that can help to identify early signs of disorders
… that can provide tireless support
… that is customizable to the exact needs of each person
… that provides continuous motivation for therapies
… that helps numerous people lead fulfilled lives

We call this robot Minder / Mentor
Human-centered robotics technology for healthcare across the lifespan

A significant niche for affordable (~laptop-cost) hands-off non-contact inherently-safe robotics: robots that help via social, not physical, interaction.

→ Immediate impact: improved health outcomes & decreased healthcare costs
Autism Spectrum Disorder

- Children with ASD interact socially with robots in ways they do not with people or computers.
- Robots can elicit social behaviors, communication, joint attention, turn taking, initiating play, even the very first social smile.
- An opportunity to develop robots as tools for ASD diagnosis, intervention, and therapy:
 - The robot is a social catalyst and coach for the child, bringing the child closer to family, peers, the rest of their worlds.

Eldercare, Alzheimer’s Disease, and Dementia

- Aging-in-place requires adherence and diagnostic monitoring and a socialization to prevent isolation and depression.
- Physical fitness is effective against the onset of Alzheimer’s and other forms of dementia.
- An opportunity for robots as tools for personalized:
 - The robot is a social companion that provides monitoring, assessment, cognitive and physical activities.
 - Elderly users smile, pet, hug and play with robots.
- Can provide affordable in-home monitoring and socialization for millions.