Lecture 5: Robot dynamics and simulation

Allison Okamura
Stanford University
Robot dynamics
equations of motion

describe the relationship between forces/torques and motion (in joint space or workspace variables)

two possible goals:

1. Given motion variables (e.g. $\ddot{\theta}, \dot{\theta}, \theta$ or \ddot{x}, \dot{x}, x), what joint torques ($\vec{\tau}$) or end-effector forces (\vec{f}) would have been the cause? (*this is inverse dynamics*)

2. Given joint torques ($\vec{\tau}$) or end-effector forces (\vec{f}), what motions (e.g. $\ddot{\theta}, \dot{\theta}, \theta$ or \ddot{x}, \dot{x}, x) would result? (*this is forward dynamics*)
developing equations of motion using Lagrange’s equation

The Lagrangian is \[L = T - V \]

where \(T \) is the kinetic energy of the system and \(V \) is the potential energy of the system.

Lagrange’s equation is

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = Q_j
\]

where \(j = 1, 2, \ldots, n \), and \(\dot{q}_j = \frac{\partial q_j}{\partial t} \) is the generalized velocity and \(Q_j \) is the nonconservative generalized force corresponding to the generalized coordinate \(q_j \).
what are generalized coordinates?

• equations of motion can be formalized in a number of different coordinate systems

• \(n \) independent coordinates are necessary to describe the motion of a system having \(n \) degrees of freedom

• any set of \(n \) independent coordinates is called generalized coordinates: \(q_1, q_2, \ldots, q_n \)

• these coordinates may be lengths, angles, etc.
generalized forces

• When external forces act on the system, the configuration changes: generalized coordinates q_j change by δq_j, $j = 1, 2, \ldots, n$

• If U_j is the work done in changing q_j by δq_j, the corresponding generalized force is $Q_j = \frac{U_j}{\delta q_j}$, where $j = 1, 2, \ldots, n$

• Q_j is a force/moment and q_j is a linear/angular displacement. This can include dissipation (damping).
where does Lagrange’s equation come from?

Hamilton’s principle of least action: a system moves from \(q(t_1) \) to \(q(t_2) \) in such a way that the following integral takes on the least possible value.

\[
S = \int_{t_1}^{t_2} L(q, \dot{q}, t) dt
\]

The calculus of variations is used to obtain Lagrange’s equations of motion. We’re concerned with minimizing

\[
\int_{t_1}^{t_2} f(y(t), \dot{y}(t); t) dt
\]

The minimization leads to the equation

\[
\frac{\partial f}{\partial y} - \frac{d}{dt} \frac{\partial f}{\partial \dot{y}} = 0
\]
using Lagrange's equation to derive equations of motion

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = Q_j, \text{ where } j = 1, 2, \ldots, n \]

\[L = T - V \]

Substitute:
\[\frac{\partial L}{\partial q_j} = \frac{\partial T}{\partial \dot{q}_j} - \frac{\partial V}{\partial q_j} \]

Last term is zero because P.E. is not dependent on velocities \(\rightarrow \frac{\partial L}{\partial q_j} = \frac{\partial T}{\partial \dot{q}_j} \)

\[\frac{\partial L}{\partial q_j} = \frac{\partial T}{\partial q_j} - \frac{\partial V}{\partial q_j} \]

\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} + \frac{\partial V}{\partial q_j} = Q_j, \text{ where } j = 1, 2, \ldots, n \]

\(Q_j \) is a nonconservative generalized force corresponding to coordinate \(q_j \), e.g. damping

For a conservative system,
\[\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} + \frac{\partial V}{\partial q_j} = 0, \text{ where } j = 1, 2, \ldots, n \]
adding dissipation

since the left side of Lagrange’s equation only includes terms for potential and kinetic energy, any dissipative terms (e.g., damping) must be added on the right hand side (and \(Q_j \) are now only the input forces/torques)

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_j} \right) - \frac{\partial L}{\partial q_j} = Q_j - \frac{\partial R}{\partial \dot{q}_j}
\]

where \(R = \frac{1}{2} \sum_j b_j \dot{q}_j^2 \)

is a simplified form of Rayleigh’s dissipation function
example: double pendulum
(review on your own)

Velocity of m_1: $v_1 = l_1 \dot{\theta}_1$
Velocity of m_2: $v_2 = (v_{2x}^2 + v_{2y}^2)$
$v_{2x} = l_1 \dot{\theta}_1 \cos(\theta_1) + l_2 \dot{\theta}_2 \cos(\theta_2)$
$v_{2y} = l_1 \dot{\theta}_1 \sin(\theta_1) + l_2 \dot{\theta}_2 \sin(\theta_2)$
example: double pendulum

Kinetic energy:
\[T = \frac{1}{2} m_1 (l_1 \dot{\theta}_1)^2 + \frac{1}{2} m_2 ((l_1 \dot{\theta}_1 \cos(\theta_1) + l_2 \dot{\theta}_2 \cos(\theta_2))^2 + (l_1 \dot{\theta}_1 \sin(\theta_1) + l_2 \dot{\theta}_2 \sin(\theta_2))^2) \]

Potential energy
\[V = m_1 g l_1 (1 - \cos(\theta_1)) + m_2 g (l_1 (1 - \cos(\theta_1)) + l_2 (1 - \cos(\theta_2))) \]

The Lagrangian is:
\[L = T - V \]
\[L = \frac{1}{2} (m_1 + m_2) l_1^2 \dot{\theta}_1^2 + \frac{1}{2} m_2 l_2^2 \dot{\theta}_2^2 + m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2) + (m_1 + m_2) g l_1 \cos(\theta_1) + m_2 g l_2 \cos(\theta_2) \]
example: double pendulum

For θ_1:

\[
\frac{\partial L}{\partial \dot{\theta}_1} = m_1 l_1^2 \dot{\theta}_1 + m_2 l_1^2 \dot{\theta}_1 + m_2 l_1 l_2 \dot{\theta}_2 \cos(\theta_1 - \theta_2)
\]

\[
\frac{d}{dt} \left(\frac{\partial L}{\partial \theta_1} \right) = (m_1 + m_2) l_1^2 \ddot{\theta}_1 + m_2 l_1 l_2 \ddot{\theta}_2 \cos(\theta_1 - \theta_2) - m_2 l_1 l_2 \dot{\theta}_2 \sin(\theta_1 - \theta_2) (\dot{\theta}_1 - \dot{\theta}_2)
\]

\[
\frac{\partial L}{\partial \theta_1} = -l_1 g (m_1 + m_2) \sin(\theta_1) - m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2)
\]

Thus, the differential equation for θ_1 becomes:

\[
(m_1 + m_2) l_1^2 \ddot{\theta}_1 + m_2 l_1 l_2 \ddot{\theta}_2 \cos(\theta_1 - \theta_2) + m_2 l_1 l_2 \dot{\theta}_2^2 \sin(\theta_1 - \theta_2) + l_1 g (m_1 + m_2) \sin(\theta_1) = 0
\]

Divide through by l_1 and this simplifies to:

\[
(m_1 + m_2) l_1 \ddot{\theta}_1 + m_2 l_2 \ddot{\theta}_2 \cos(\theta_1 - \theta_2) + m_2 l_2 \dot{\theta}_2^2 \sin(\theta_1 - \theta_2) + g (m_1 + m_2) \sin(\theta_1) = 0
\]
example: double pendulum

Similarly, for θ_2:

$$\frac{\partial L}{\partial \theta_2} = m_2 l_2^2 \ddot{\theta}_2 + m_2 l_1 l_2 \dot{\theta}_1 \cos(\theta_1 - \theta_2)$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \theta_2} \right) = m_2 l_2 \ddot{\theta}_2 + m_2 l_1 l_2 \dot{\theta}_1 \cos(\theta_1 - \theta_2) - m_2 l_1 l_2 \dot{\theta}_1 \sin(\theta_1 - \theta_2)(\dot{\theta}_1 - \dot{\theta}_2)$$

$$\frac{\partial L}{\partial \theta_2} = m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) - l_2 m_2 g \sin \theta_2$$

Thus, the differential equation for θ_2 becomes:

$$m_2 l_2^2 \ddot{\theta}_2 + m_2 l_1 l_2 \dot{\theta}_1 \cos(\theta_1 - \theta_2) - m_2 l_1 l_2 \dot{\theta}_1^2 \sin(\theta_1 - \theta_2) + l_2 m_2 g \sin \theta_2 = 0$$

Divide through by l_2 and this simplifies to:

$$m_2 l_2 \ddot{\theta}_2 + m_2 l_1 \dot{\theta}_1 \cos(\theta_1 - \theta_2) - m_2 l_1 \dot{\theta}_1^2 \sin(\theta_1 - \theta_2) + m_2 g \sin \theta_2 = 0$$

So, we have developed a very complicated set of coupled equations of motion from a very simple system!
but robots are not point masses...

links could be represented by solid cylinders

moments of inertia about center:

\[I_z = \frac{mr^2}{2} \]

\[I_x = I_y = \frac{1}{12} m \left(3r^2 + h^2 \right) \]

moment of inertia tensor:

\[
I = \begin{bmatrix}
\frac{1}{12} m (3r^2 + h^2) & 0 & 0 \\
0 & \frac{1}{12} m (3r^2 + h^2) & 0 \\
0 & 0 & \frac{1}{2} mr^2
\end{bmatrix}
\]

what do you do if the rotation is not about the center?

If the new axis of rotation is parallel to the original axis of rotation, use the parallel axis theorem:

$$I_{new} = I_{cm} + mR^2$$

- I_{cm}: moment of inertia of the object about an axis passing through its center of mass
- m: object’s mass
- R: perpendicular distance between the two axes
and what if the new axis of rotation is not parallel to the original?

the moment of inertia of a continuous solid body rotating about a known axis is calculated by

\[I = \int_V \rho(\vec{r})d(\vec{r})dV(\vec{r}) \]

\[\vec{r} \] radius vector (from origin to volume element of interest)

\[\rho(\vec{r}) \] object’s mass density at \(\vec{r} \)

\[d(\vec{r}) \] shortest distance between a point at \(\vec{r} \) and the axis of rotation

integrated over the volume \(V \) of the body

... but to reduce the complexity of this week’s assignment, we will approximate the moment of inertia by assuming that we do have parallel axes
considering kinetic energy of solids

sum translational and rotational components

\[T = \frac{1}{2} m v^2 + \frac{1}{2} I \omega^2 \]

\[KE_{\text{rotational}} = \frac{1}{2} I \omega^2 \]

\[KE_{\text{linear}} = \frac{1}{2} m v^2 \]

http://hyperphysics.phy-astr.gsu.edu/hbase/rke.html
for robot dynamics background

class: CS223A / ME320: Introduction to Robotics
dynamics and robotics textbooks such as
John J. Craig
Introduction to Robotics: Mechanics and Control

... and many others

In Assignment 3, we will give you the dynamic equations, but it helps to understand where they come from!
questions

• how do you think an RCM robot compares to a typical serial chain manipulator in terms of its dynamics?

• does the da Vinci have haptic feedback? (and how do the system dynamics affect this capability?)
Dynamic simulation
controller on one end, system dynamics on the other

A controller computes the desired force

e.g. \(f = k_p^* (x - x_d) \)

In Assignment 3, you will simulate the effects of system dynamics

This force and externally applied loads result in robot motion

E.g., solve for \(x \) in \(f = m\ddot{x} + b\dot{x} \)
simulating equations of motion

goal: given an equation of motion and applied forces, what will the resulting robot motion be?

The dynamics equations we have are coupled, non-linear ODEs. They are hard (likely impossible) to solve analytically.

Instead, we solve them using numerical integration.

you can do a simple calculation yourself, i.e. integration using the trapezoidal rule, or use a handy and more accurate/robust Matlab function (Simulink is also an option)
There are a series of native Matlab functions that solve ODEs given initial conditions. Different functions are appropriate for different problem types ("stiffness", corresponding to large differences in scales) and and order of accuracy (low to high).

<table>
<thead>
<tr>
<th>Solver</th>
<th>Problem Type</th>
<th>Order of Accuracy</th>
<th>When to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>ode45</td>
<td>Nonstiff</td>
<td>Medium</td>
<td>Most of the time. This should be the first solver you try.</td>
</tr>
<tr>
<td>ode23</td>
<td>Nonstiff</td>
<td>Low</td>
<td>For problems with crude error tolerances or for solving moderately stiff problems.</td>
</tr>
<tr>
<td>ode113</td>
<td>Nonstiff</td>
<td>Low to high</td>
<td>For problems with stringent error tolerances or for solving computationally intensive problems.</td>
</tr>
<tr>
<td>ode15s</td>
<td>Stiff</td>
<td>Low to medium</td>
<td>If ode45 is slow because the problem is stiff.</td>
</tr>
<tr>
<td>ode23s</td>
<td>Stiff</td>
<td>Low</td>
<td>If using crude error tolerances to solve stiff systems and the mass matrix is constant.</td>
</tr>
<tr>
<td>ode23t</td>
<td>Moderately Stiff</td>
<td>Low</td>
<td>For moderately stiff problems if you need a solution without numerical damping.</td>
</tr>
<tr>
<td>ode23tb</td>
<td>Stiff</td>
<td>Low</td>
<td>If using crude error tolerances to solve stiff systems.</td>
</tr>
</tbody>
</table>

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step solver - in computing \(y(t_n) \), it needs only the solution at the immediately preceding time point, \(y(t_{n-1}) \). In general, ode45 is the best function to apply as a “first try” for most problems.
The basic syntax for these solvers is:

\[
[T,Y] = \text{solver}(\text{odefun},\text{tspan},y0)
\]

where:

- **solver** is one of ode45, ode23, etc.
- **odefun** is a function handle that evaluates the right side of the differential equations
- **tspan** is a vector specifying the interval of integration, \([t0,tf]\)
- **y0** is a vector of initial conditions

Example: First order system

Let’s say that we want to solve the function

\[
\dot{y} + 2y = 0
\]

for the initial condition \(y(0) = 10\).
First, you need to create a function of the form $y = f(t, y)$:

```matlab
function ydot = my_function(t,y)
    ydot = -2*y; % end of subprogram
```

And the code to apply initial condition and solve the system is:

```matlab
tspan = [0,5]; % time duration for calculation
y0 = 10; % initial condition
[t,y] = ode45('my_func',tspan,y0);

% plot the response
figure
plot(t,y)
title('First Order Response')
xlabel('Time (s)')
ylabel('Position (m)')
```

Example: Second order system

We will now look at the response of a second order system, an inverted pendulum with the following equation of motion:

$$\ddot{\theta} + \frac{g}{l} \sin(\theta) = 0$$
trajectory generation

reference: Chapter 7 of Introduction to Robotics by J. J. Craig (any edition)
discussion

why would you want to generate a trajectory?

would you want to do trajectory generation in Cartesian space or joint space?
user provides the desired position (trajectory) at each control loop

surgical planning specifies the start/end points and desired via points

for autonomous robots, we typically specify the trajectory based on start point, end point, via points, motion (e.g., velocity) constraints, and/or time constraints
discussion

what properties might you want in a trajectory?
Trajectory generation goal

move a manipulator from an initial pose to a final pose in a *smooth* manner

what does smooth mean?

at least C1 continuous position profile
at least C0 continuous velocity profile
possibly continuous acceleration profile
point-to-point trajectory generation

Consider the problem of moving a robot end-effector from its **initial 3D pose** to a **final 3D pose** in a certain amount of time.

\[
p(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix}
\]

robot graphic courtesy Fidel Hernandez
a smooth path

cubic polynomial: \(p(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = a_0 + a_1 t + a_2 t^2 + a_3 t^3 \)

\[x(t) = a_{x0} + a_{x1} t + a_{x2} t^2 + a_{x3} t^3 \]

or \(y(t) = a_{y0} + a_{y1} t + a_{y2} t^2 + a_{y3} t^3 \)

\[z(t) = a_{z0} + a_{z1} t + a_{z2} t^2 + a_{z3} t^3 \]

derivatives: \(\dot{p}(t) = \begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \\ \dot{z}(t) \end{bmatrix} = a_1 + 2a_2 t + 3a_3 t^2 \)

\(\ddot{p}(t) = \begin{bmatrix} \ddot{x}(t) \\ \ddot{y}(t) \\ \ddot{z}(t) \end{bmatrix} = 2a_2 + 6a_3 t \)
constraints

position and velocity at initial and final times:

\[p(0) = p_0 \]
\[p(t_f) = p_f \]
\[\dot{p}(0) = 0 \]
\[\dot{p}(t_f) = 0 \]

with four equations and four unknowns, you can solve for the coefficients \(a \) in terms of \(p_0 \) and \(p_f \) and the time \(t_f \)

you can pick the time \(t_f \) based on how quickly you want to move between to the two points, or based on a maximum velocity constraint
example trajectory

- **Position**
 - cubic polynomial
 - C1 continuous

- **Velocity**
 - quadratic polynomial
 - C0 continuous

- **Acceleration**
 - linear polynomial
 - not continuous (at t = 0)
now what?

now that you have created a trajectory (i.e., you know the desired position of the robot at each time step), you can control the robot to follow this trajectory

previously, we generated this trajectory using the “master” of the teleoperator
discussion

why is a smooth trajectory important?
why might you want a smoother trajectory?
how could you compute this?

what do the produced trajectories look like spatially? what if you design in joint space instead of Cartesian space?

how might via points be useful?
how would you generate trajectories for them?
discussion

how would you compute t_f based on a defined maximum velocity?

what kind of trajectory would you want for a robot that inserts a needle into solid tissue?

bloodbot (Imperial College of London)
Overview

user input or trajectory

g_{pd}, similar to Assignment 2

dynamic model or physical robot

$\dot{x}(t) = f(x(t), g_{pd}(x(t), x_d(t)))$

the ODE we solve numerically
Assignment 3

Problem 0: Commentary on seminar
Problem 1: Read papers, answer questions
Problem 2: Modeling and simulation of medical robot dynamics
Problem 3: Effects of dynamics on robot control

To be posted tomorrow, due Thursday, Jan. 31 at 4 pm

FRIDAY’S SEMINAR IS AT 8:30 am! (in 320-105)