
ME470: Uncertainty Quantification Homework #2
Mechanical Engineering

Stanford University April 26, 2011

Homework #2 is due the beginning of class on Tuesday, May 10, although you may
submit an electronic version before then. Each person should turn in his or her own
write-up. No late homeworks will be accepted.

Problem 1. Concepts

This homework section will serve as the notes for the univariate polynomial material of
the course. Your assignment is to complete (i) Exercises 4 and 5, and (ii) two other
exercises of your choice. If you complete all the exercises, you earn the title of Total
Polynomial Ninja.

Consider a function f : S → R, where the domain S ⊂ R. Choices for the domain
include closed, semi-infinite, or infinite intervals, i.e. [a, b], [a,∞), (−∞, b], or (−∞,∞).
Let s ∈ S be a point in the domain. We assume that the domain is equipped with a
positive weight function w : S → R+ such that

∫

S

skw(s) ds < ∞, k = 1, 2, . . . (1)

We assume that w(s) is normalized to integrate to 1, which allows the interpretation
of w(s) as a probability density function. In general, we consider functions which are
square-integrable on S, i.e.

〈

f 2
〉

≡
∫

S

f(s)2w(s) ds < ∞, (2)

where the bracket notation denotes integration against the weight function. However,
the polynomial approximation methods work best for smooth functions – particularly
functions that are analytic in a region of the complex plane containing S.

Orthogonal Polynomials and Gaussian Quadrature: Let P be the space of real
polynomials defined on S, and let Pn ⊂ P be the space of polynomials of degree at most
n. For any p, q in P, we define the inner product as

〈pq〉 ≡
∫

S

p(s)q(s)w(s) ds. (3)

We define a norm on P as ‖p‖L2 =
√

〈p2〉, which is the standard L2 norm for the given
weight w(s). Let {πk(s)} be the set of polynomials that are orthonormal with respect to
w(s), i.e. 〈πiπj〉 = δij . It is known that {πk(s)} satisfy a three-term recurrence relation

βk+1πk+1(s) = (s− αk)πk(s)− βkπk−1(s), k = 0, 1, 2, . . . , (4)

with π−1(s) = 0 and π0(s) = 1. If we consider only the first n equations, then we can
rewrite (4) as

sπk(s) = βkπk−1(s) + αkπk(s) + βk+1πk+1(s), k = 0, 1, . . . , n− 1. (5)
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Setting π(s) = [π0(s), π1(s), . . . , πn−1(s)]
T , we can write this conveniently in matrix form

as
sπ(s) = Jπ(s) + βnπn(s)en (6)

where en is a vector of zeros with a one in the last entry, and J (known as the Jacobi

matrix ) is a symmetric, tridiagonal matrix defined as

Jn =















α0 β1

β1 α1 β2

. . .
. . .

. . .

βn−2 αn−2 βn−1

βn−1 αn−1















. (7)

EXERCISE 1: Use (6) to show that αi = 〈sπ2
i 〉 and βi = 〈sπi−1πi〉.

The zeros {λi} of πn(s) are the eigenvalues of J and π(λi) are the corresponding eigen-
vectors; this follows directly from (6). Let Q be the orthogonal matrix of eigenvectors of
J; the elements of Q are given by

Q(i, j) =
πi(λj)

‖π(λj)‖2
, i, j = 0, . . . , n− 1, (8)

where ‖ · ‖2 is the standard 2-norm on R
n. Then we write the eigenvalue decomposition

of J as
J = QΛQT . (9)

It is known that the eigenvalues {λi} are the familiar Gaussian quadrature points asso-
ciated with the weight function w(s). The quadrature weight νi corresponding to λi is
equal to the square of the first component of the eigenvector associated with λi, i.e.

νi = Q(0, i)2 =
1

‖π(λi)‖22
. (10)

The weights {νi} are known to be strictly positive. For an integrable scalar function
f(s), we can approximate its integral by an n-point Gaussian quadrature rule, which is
a weighted sum of function evaluations,

∫

S

f(s)w(s) ds =

n−1
∑

i=0

f(λi)νi +R(f). (11)

If f ∈ P2n−1, then Rn(f) = 0; that is to say the degree of exactness of the Gaussian
quadrature rule is 2n− 1. We use the notation

〈f〉n ≡
n−1
∑

i=0

f(λi)νi (12)
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to denote the Gaussian quadrature rule. This is a discrete approximation to the true
integral.

EXERCISE 2: Show that 〈f〉n = eT1 f(J)e1, where e1 is a vector of zeros with a 1 in
the first component.

Fourier Series: The polynomials {πk(s)} form an orthonormal basis for the Hilbert
space

L2 ≡ L2
w(S) = {f : S → R | ‖f‖L2 < ∞} . (13)

Therefore, any f ∈ L2 admits a convergent Fourier series

f(s) =

∞
∑

k=0

〈fπk〉πk(s). (14)

The coefficients 〈fπk〉 are called the Fourier coefficients. If we truncate the series (14)
after n terms, we are left with a polynomial of degree n−1 that is the best approximation
polynomial in the L2 norm. In other words, if we denote

Pnf(s) =

n−1
∑

k=0

〈fπk〉πk(s), (15)

then
‖f − Pnf‖L2 = inf

p∈Pn−1

‖f − p‖L2 . (16)

In fact, the error made by truncating the series is equal to the sum of squares of the
neglected coefficients,

‖f − Pnf‖2L2 =

∞
∑

k=n

〈fπk〉2 . (17)

These properties of the Fourier series motivate the theory and practice of spectral meth-
ods.

Spectral Collocation and Pseudospectral Approximations: It will be nota-
tionally convenient to define the matricesP(i, j) = πi(λj) andW = diag([

√
ν0, . . . ,

√
νn−1]),

and note that the orthogonal matrix of eigenvectors Q can be written Q = PW.
The spectral collocation approximation of f(s) constructs a Lagrange interpolating

polynomial through the Gaussian quadrature points. Since the points are distinct, the
n − 1 degree interpolating polynomial is unique. We write this approximation fc(s),
where the subscript c is for collocation, as

f(s) ≈ fc(s) =

n−1
∑

i=0

f(λi)ℓi(s) ≡ fT l(s). (18)

The vector f contains the evaluations of f(s) at the quadrature points, and the parame-
terized vector l(s) contains the Lagrange cardinal functions

ℓi(s) =

n−1
∏

j=0, j 6=i

s− λj

λi − λj
. (19)
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By construction, the collocation polynomial fc(s) interpolates f(s) at the Gaussian
quadrature points.

The pseudospectral approximation of f(s) is constructed by first truncating its Fourier
series at n terms and approximating each Fourier coefficient with a quadrature rule. If
we use the n-point Gaussian quadrature, then we can write

f(s) ≈ fp(s) =
n−1
∑

i=0

〈fπi〉n πi(s) ≡ f̂Tπ(s), (20)

where

〈fπi〉n ≡
n−1
∑

j=0

f(λj)πi(λj)νj, (21)

and the vector f̂ contains all coefficient approximations; the subscript p on fp(s) is for
pseudospectral. We next state two lemmas about the relationship between the spectral
collocation and pseudospectral approximations for future reference.

Lemma 1. The vector of evaluations of f at the quadrature points f is related to the

pseudospectral coefficients f̂ by

f̂ = QWf = PW2f . (22)

Proof: EXERCISE 3.

In the language of signal processing, this tranformation is called a discrete Fourier

transform.

Lemma 2. The pseudospectral approximation fp(s) is equal to the spectral collocation

approximation fc(s) for all s ∈ S.

Proof: EXERCISE 4. (Hint: Use the fact that a Lagrange interpolant of the orthogo-
nal basis evaluated at the Gaussian quadrature points exactly reproduces the orthogonal
basis.)

Note that Lemma 2 implies that the pseudospectral approximation fp(s) interpolates
f(s) at the Gaussian quadrature points.

Remark: We have restricted our attention to orthonormal polynomials and Gaussian
quadrature rules for a given weight function. However, transformations similar to Lemma
1 apply for Chebyshev polynomials and Clenshaw-Curtis quadrature rules using an FFT.
For an insightful discussion of the comparisions between these methods of integration
and approximation, see Trefethen (SIAM Review, 2008).

Least Squares Approximation: Suppose we are given n points sj ∈ S and function
evaluations fj = f(sj) with j = 0, . . . , n − 1. We want to find a polynomial of degree
m − 1 ≤ n − 1 that best approximates f(s) at the points sj . (The m − 1 is used as
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opposed to m to be consistent.) We know that any polynomial of degree m − 1 can be
written as a linear combination of the first m basis polynomials,

f(s) ≈
m−1
∑

i=0

xiπi(s). (23)

This yields the least squares approximation problem

minimize
xi

(

m−1
∑

i=0

xiπi(sj)− fj

)2

, j = 0, . . . , n− 1. (24)

Let x be the m-vector whose ith component is xi, and let f be the n-vector whose jth
component is fj . Define the n ×m matrix P with elements P(i, j) = πi(sj). Then we
can write the least squares approximation problem as

minimize
x

‖PTx− f‖22. (25)

EXERCISE 5. Suppose that sj = λj , i.e. that the points chosen to evaluate f(s)
were from the n-point Gaussian quadrature rule. Show that, if the jth equation in (24)
is weighted by the Gaussian quadrature weight νj, then the pseudospectral coefficients f̂
from (21) satisfy the least squares approximation problem (25). (Hint: Use the normal
equations).

Spectral Galerkin Approximation: Suppose that f(s) = b(s)/a(s) is a rational
function of s with a(s) > 0 for all s ∈ S. The spectral Galerkin method computes a
finite dimensional approximation to f(s) such that each element of the equation residual
is orthogonal to the approximation space. Define

r(y, s) = a(s)y(s)− b(s). (26)

The finite dimensional approximation space for f(s) will be the space of polynomials of
degree at most n − 1. We seek a polynomial fg(s) (the subscript g is for Galerkin) of
maximum degree n− 1 such that

〈r(fg)πk〉 = 0, k = 0, . . . , n− 1. (27)

We can write equations (27) in matrix notation as
〈

r(fg)π
T
〉

= 0, (28)

or equivalently
〈

afgπ
T
〉

=
〈

bπT
〉

. (29)

Since fg(s) is a polynomial of degree at most n−1, we can write its expansion in {πi(s)}
as

fg(s) =

n−1
∑

i=0

giπi(s) ≡ gT
π(s), (30)



6 ME470: Homework #2

where g is an n-vector. Then equation (29) becomes

〈

agT
ππ

T
〉

=
〈

bπT
〉

. (31)

Since g is constant, we can rewrite (31) as

〈

aππT
〉

g = 〈bπ〉 . (32)

The (i, j) element of the n × n constant matrix
〈

aππT
〉

is equal to 〈aπiπj〉. More
explicitly,

〈

aππT
〉

=







〈aπ0π0〉 · · · 〈aπ0πn−1〉
...

. . .
...

〈aπn−1π0〉 · · · 〈aπn−1πn−1〉






. (33)

Similarly, the ith element of the n-vector 〈bπ〉 is equal to 〈bπi〉, which is exactly the ith
Fourier coefficient of b(s). In the language of signal processing, equation (32) can be
interpreted as a deconvolution.

Lemma 3. Suppose that a(s) is a polynomial of degree at most m. Then for n > m+1,
the matrix

〈

aππT
〉

will have bandwidth 2m+ 1.

Proof: EXERCISE 6.

Lemma 4. Let f(s) be analytic in a region of the complex plane containing S. Then
〈

fππT
〉

n
= f(J).

Proof: EXERCISE 7.

Theorem 5. The pseudospectral approximation fp(s) is equal to an approximation of

the Galerkin solution where each integral in equation (32) is approximated by an n-point
Gaussian quadrature formula. In other words, f̂ satisfies

〈

aππT
〉

n
f̂ = 〈bπ〉n . (34)

Proof: EXERCISE 8.

Theorem 6. Suppose that a(s) = a0 + a1s for some constants a0 and a1. If b is a poly-

nomial of degree n− 1, then the pseudospectral approximation fp(s) of f(s) = b(s)/a(s)
with an n-point Gaussian quadrature rule is equal to a spectral Galerkin approximation

for all s ∈ S.

Proof: EXERCISE 9.
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Point Weight
(-0.77,-0.58) 0.14
(0.00,-0.58) 0.22
(0.77,-0.58) 0.14
(-0.77,0.58) 0.14
(0.00,0.58) 0.22
(0.77,0.58) 0.14

Table 1: A bivariate quadrature rule corresponding to n = (3, 2).

Problem 2. Programming

In this exercise, you will write a program to compute the points and weights of a sparse
grid quadrature rule given code to compute the points and weights of a tensor product
quadrature rule. The code for computing the tensor product rules is given in the PMPack
suite of Matlab tools, which is available on the website, along with a test script.

Consider a function f : S → R where S = [−1, 1]d is a d-dimensional hypercube,
and let w(s) be the weight function on S. Given a multi-index n = (n1, . . . , nd) ∈ N

d,
a tensor product quadrature rule is formed by the cross product of univariate nk-point
quadrature rules, k = 1, . . . , d. For example, a 3-point rule in the first variable with
points and weights

λ0 = −0.77 ν0 = 0.28
λ1 = 0.00 ν1 = 0.44
λ2 = 0.77 ν2 = 0.28

(35)

can be combined with a 2-point rule in the second variable

λ0 = −0.58 ν0 = 0.50
λ1 = 0.58 ν1 = 0.50

(36)

to create a tensor product rule for bivariate integration given in Table 1. The weights of
the tensor product rule are products of the weights for each univariate rule.

Let I
n
(f) be the tensor product quadrature rule approximation of the integral

I
n
(f) ≈

∫

S

f(s)w(s) ds.

A sparse grid quadrature formula can be written as a linear combination of specially
chosen tensor product quadrature formulas. We can define a constraint c : Nd → {0, 1}
that takes a multi-index and returns 1 if the constraint is satisfied, and zero if it is not.
A common constraint in the sparse grid quadrature construction is

c(n) =

(

l + 1 ≤
d
∑

k=1

nk ≤ l + d

)

, (37)
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where the parameter l is called the level. Let C be the set of multi-indices that satisfies
the constraints, i.e.

C = {n : c(n) = 1, n ∈ N
d}. (38)

We also define a growth rule γ : Nd → N
d, which dictates the number of points in the

univariate quadrature rules given a multi-index. For example, an exponential growth rule
may be given by

γ(nk) = 2nk − 1, nk ≥ 1, k = 1, . . . , d. (39)

An exponential growth rule is useful if the univariate point sets are nested, i.e. the points
of an n-point rule are a subset of the points of a (2n+1)-point rule; this happens for the
Chebyshev points. A sparse grid built from univariate rules with a nesting property will
also be nested.

Given a constraint c = c(n) and growth rule γ = γ(n), we can compute a sparse grid
approximation to the integral as

∫

S

f(s)w(s) ds ≈
∑

n∈C

a
n
Iγ(n)(f), (40)

where a
n
is the coefficient of the linear combination, which are typically given with the

constraint.

Note that some of the function evaluations in the various Iγ(n)(f) may occur at the
same point in the parameter space. Therefore, a naive implementation of (40) is inefficient
– particularly if the function evaluations are very expensive.

A. Write a program that takes the points and weights of each individual tensor product
quadrature rule and produces a list of d-dimensional points and corresponding
weights for the sparse grid quadrature rule. Use the constraint from (37) with
coefficients

a
n
= (−1)p

(

d− 1

p

)

, p = d+ l − (n1 + · · ·+ nd).

Use the growth rule from (39). Plot the points for d = 2 and levels 3 and 6.

B. Perform a refinement study by increasing the level l from 1 to 7 on the following
three bivariate functions: (i) es1+s2 , (ii) sin(5(s1 − 0.5)) + cos(3(s2 − 1)), and (iii)
1/(2 + 16(s1 − 0.1)2 + 25(s2 + 0.1)2). Use a uniform weight function.

C. Divide each function above by the Chebyshev weight function w(s1, s2) = (1 −
s21)

1/2(1−s22)
1/2, and use the points from the Chebyshev measure, which are nested.

Compare the number of function evaluations required to the number of function
evaluations for each function from part B.
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Problem 3. Reading

Read the following papers.

A. Paul G. Constantine, David F. Gleich, and Gianluca Iaccarino. Spectral Meth-

ods for Parameterized Matrix Equations. SIAM Journal of Matrix Analysis and
Applications, 2010.

B. Dongbin Xiu and George Em Karniadakis. The Wiener–Askey Polynomial Chaos

for Stochastic Differential Equations. SIAM Journal of Scientific Computing, 2002.

C. Dongbin Xiu and Jan S. Hesthaven. High-Order Collocation Methods for Differen-

tial Equations with Random Inputs. SIAM Journal of Scientific Computing, 2005.

Write a one-page critical response to one of the papers. You should summarize the work
in a paragraph and attempt to answer questions such as: How might you apply these
ideas to your own research? What are the primary advantages and disadvantages of the
methods? How might the methods or concepts be improved?


