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Omitted variable bias
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Omitting variables

Recall that a key problem in causal inference is omitted variable
bias.

Suppose, for example, that we observe that individuals who are on
a particular diet have lower rates of inflammatory arthritis.

However, we don’t realize that these same individuals also have
high levels of exercise.

If we ignore or do not observe exercise levels, we may mistakenly
attribute the lower rates of inflammatory arthritis to the diet.
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A simple model

Consider the following simple population model:

I There are two covariates X and Z.

I Given values of X and Z, the outcome Y is realized as:

Y = β0 + βXX + βZZ + ε,

where E[ε|X,Z] = 0.

I We observe n i.i.d. observations from this model.
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Omitting X

Suppose that we don’t observe Zi for each i.

We run the regression Yi ≈ β̂0 + β̂XXi using OLS.

What happens?
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Omitting X

Recall that for a simple linear regression:

β̂X =

∑n
i=1XiYi −XY∑n
i=1X

2
i −X

2 .

The numerator is the sample covariance of X and Y, and the
denominator is the sample variance of X.

We now show that this is a biased estimator of βX .
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Omitted variable bias

In particular we can show:

E[β̂X |X,Z] = βX + βZ δ̂Z|X ,

where δ̂Z|X is the coefficient of X in the regression Zi ≈ δ̂0+ δ̂1Xi:

δ̂Z|X =

∑n
i=1XiZi −XZ∑n
i=1X

2
i −X

2 .

The idea is that by omitting Z, we estimate a coefficient on X
that includes not only the direct effect of X, but also a part of the
effect of Z (determined exactly by how correlated Z is with X).
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Correcting omitted variable bias

How can we correct for omitted variable bias?

I We can run a randomized experiment where we directly vary
X; e.g., we can set one value of X in the control group, and
another value of X in the treatment group. This forces X to
be independent of Z in the population, eliminating the bias.

I We can add additional covariates, in hopes that this removes
any bias in our estimates.

I These strategies are limited in their applicability. Instrumental
variables are another approach to addressing this problem.
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Instrumental variables
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What is an instrument?

Informally, an instrument is an additional covariate W that has two
properties:

I “Strong first stage”: The instrument is positively correlated
with the covariate X. In other words, when W varies, X
varies as well.

I “Exclusion restriction”: Given X, the instrument is
uncorrelated with the outcome Y .

The first property allows the instrument to act as a “knob” that
adjusts X. This can be directly verified from the data.

The second property ensures that any effects observed from this
knob are only felt because of its action through X, rather than
through any direct effect on the outcome. A convincing case must
be made for this property based on the structure of the setting;
usually data analysis is not enough.
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Example: Education and earnings

A classic example is found in Angrist and Krueger’s study of the
effect of compulsory schooling on earnings.

In studying the effect of schooling on earnings is that there is an
omitted variable bias: econometricians cannot directly observe
individual ability.

Angrist and Krueger develop a clever instrument: they note that
due to features of regulations around compulsory schooling,
students born earlier in the year can drop out of school with less
schooling than students born later in the year.

This allows them to use quarter of birth as an instrument for
quantity of education.
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Example: Supply shocks

Suppose you want to measure the sensitivity of price a product to
the supply of a given product.

This is a challenging problem because supply is endogenous: low
prices encourage greater supply.

However, in some contexts, external events can alter the level of
supply available, without directly influencing prices. For example,
variations in weather can influence production of vegetable crops,
allowing weather to be used as an instrument for supply.

From Dubner and Levitt (NY Times Magazine): “From an
economist’s perspective, the great thing about the weather is that
there is nothing humans can do to affect it (at least until
recently).”
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Example: Encouragement design

Suppose you launch a new product, and want to measure
satisfaction from use. It may be difficult (or unethical) to do a
randomized experiment where you force half the population to use
it, and exclude half the population from using it.

Instead, you can randomize encouragement to use the product:
encourage half the population to use the product, and do not
encourage the other half.

As long as:

1. encouragement is strongly correlated with usage; and

2. the act of encouragement itself is uncorrelated with
satisfaction with the product,

encouragement acts as an instrument for usage.
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An instrument W

Suppose in our example that we find a covariate W such that:

1. The sample covariance of X and W is positive in our data.

2. In the population, E[Wε̃|X] = 0, where ε̃ = βZZ + ε is the
total error if Z is an omitted variable. This is the exclusion
restriction, and cannot be verified from data.

How do we use the instrument?
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Estimating βX

We want to estimate the causal effect of X on Y .

Intuitively, what do we expect?

I Suppose that a one unit change in W is associated with a δ
unit change in X.

I Suppose in addition that a one unit change in W is associated
with a γ unit change in Y .

Since variation in W is associated only to variation in X, the effect
on Y could not have arisen from any other mechanism except
variation in X. Thus we expect the effect of X on Y to be γ/δ.
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Estimating βX

Formally, we first regress X on W via Xi ≈ δ̂0 + δ̂Wi to obtain:

δ̂ =

∑n
i=1XiWi −XW∑n
i=1W

2
i −W

2 .

We also regress Y on W via Yi ≈ γ̂0 + γ̂Wi to obtain:

γ̂ =

∑n
i=1 YiWi − YW∑n
i=1W

2
i −W

2 .
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Estimating βX

Thus we have:
γ̂

δ̂
=

∑n
i=1 YiWi − YW∑n
i=1XiWi −XW

.

It can be shown that:

E
[
γ̂

δ̂

]
= βX .

In other words, this is an unbiased estimator of the true causal
effect of X on Y .
This is called the instrumental variables least squares estimator.
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Two-stage least squares
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Computing estimates via instrumental variables

Suppose there are many instruments: a matrix W, where Wik is
the i’th observation of the k’th instrument.

Suppose these are instruments for covariates in the matrix X,
where Xij is the i’th observation of the j’th covariate (sometimes
referred to as the endogenous covariates).

Suppose in addition we have additional covariates U, where Ui` is
the i’th observation of the `’th covariate (sometimes referred to as
the exogenous covariates).

And finally suppose we have outcomes Yi.
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Computing estimates via instrumental variables

In practice, with many instruments and many covariates, the
technique used to construct an estimator of the effect of the
covariates in X is referred to as two-stage least squares (2SLS).
The basic idea of 2SLS is as follows:

1. Regress each covariate in X on W and all the other covariates
in U. Use this to get fitted values X̂ip for each covariate.

2. Regress the outcomes Y on the fitted values X̂ and the
covariates in U.

The idea is that the variation in the instruments “explains”
variation in the covariates in X. The exclusion restriction assumes
that any variation in the outcome can only have arisen due to this
variation in the covariates in X, not due to variation in the
instruments.
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2SLS: Things to know

I In the simple case we’ve discussed thus far, 2SLS gives the
same answer as our earlier computation of the IV least squares
estimator.

I Despite being called “two-stage”, 2SLS is not estimated in
two stages: it is solved simultaneously.

I This is important especially for computation of standard
errors, which would be incorrect if we just reported second
stage standard errors.

21 / 23



Concluding thoughts
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The challenge of finding instruments

Instrumental variables are typically found when there is exogenous
variation that leads to changes in the variable of interest to the
data scientist.

It can be hard to verify the exclusion restriction, especially if all
one has is observational data.

However, variation induced by experiments can often be used as an
instrumental variable. This is a common use case in instrumental
variables analysis in, e.g., the tech industry.
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