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Model scores

In this lecture we develop an approach to estimation of prediction
using limited data (i.e., “in-sample” estimation of prediction error),
that relies on underlying assumptions about the model that
generated the data.
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Model scores

Model scoring uses the following approach:
» Choose a model, and fit it using the data.

» Compute a model score that uses the sample itself to estimate
the prediction error of the model.

By necessity, this approach works only for certain model classes; we
show how model scores are developed for linear regression.
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Training error

The first idea for estimating prediction error of a fitted model
might be to look at the sum of squared error in-sample:

Erre = (%~ f(X0)? =~ S i

i=1 =1

This is called the training error; it is the same as 1/n x sum of
squared residuals we studied earlier.
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Training error vs. prediction error

Of course, we should expect that training error is too optimistic
relative to the error on a new test set: after all, the model was
specifically tuned to do well on the training data.

To formalize this, we can compare Erry, to Errj,, the in-sample
prediction error.

1 & o .
Errip = ;E[(Y — fX))X, Y, X =X,].

This is the prediction error if we received new samples of Y
corresponding to each covariate vector in our existing data.l

1The name is confusing: “in-sample” means that it is prediction error on
the covariate vectors X already in the training data; but note that this measure
is the expected prediction error on new outcomes for each of these covariate

vectors.
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Training error vs. test error

Let's first check how these behave relative to each other.

Generate 100 X, X2 ~ N(0,1), i.i.d.
Let V; = 1+ X;1 +2X;2 + &;, where g; ~ N(0,5), i.i.d.
Fit a model f using OLS, and the formula Y ~ 1 + X1 + X2.

Compute training error of the model.
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Generate another 100 test samples of Y corresponding to
each row of X, using the same population model.

A\

Compute in-sample prediction error of the fitted model on the
test set.

P Repeat this process 500 times, and create a plot of the results.
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Training error vs. test error

Results:

density

Errin - Em.tr

Mean of Errj, — Erry, = 1.42; i.e., training error is underestimating
in-sample prediction error.
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Training error vs. test error

If we could somehow correct Erry, to behave more like Err;,, we
would have a way to estimate prediction error on new data (at
least, for covariates X; we have already seen).

Here is a key result towards that correction.?

Theorem

E[Errin|X] = E[Erry|X] + % D Cov(f(Xi),Yi|X).
=1

In particular, if Cov(f(X;),Y:|X) > 0, then training error
underestimates test error.

2This result holds more generally for other measures of prediction error, e.g.,

0-1 loss in binary classification.
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Training error vs. test error: Proof [«]

Proof. If we expand the definitions of Erry, and Errj,, we get:
Erry — Erry = © i (E[W\X' — X, - V2
n &
—2(B[Y X =X;] - ) f(X:))
Now take expectations over Y. Note that:
E[Y?X, ¥ = X,] = E[Y2X],

since both are the expectation of the square of a random outcome
with associated covariate X;. So we have:

E[Erri, — Erry|X] = ——ZE{ v|X =X - Yi)f(X,»)\X].
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Training error vs. test error: Proof [«]

Proof (continued): Also note that E[Y|X = X;] = E[Y;|X], for
the same reason. Finally, since:

E[Y; — E[Y;X][X] =0,
we get:
E[Errin — Erry|X] = izn: (E[(Y E[Y|X = Xi]) |X}
=1
_R[Y; — E[Yi|X][X]E] \X)

which reduces to (2/n) Y ", Cov(f(X;),Y;|X), as desired.
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The theorem’s condition

What does Cov(f(X;),Y;|X) > 0 mean?

In practice, for any “reasonable” modeling procedure, we should
expect our predictions to be positively correlated with our outcome.
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Example: Linear regression

Assume a linear population model ¥ = Xﬁ + €, where
E[e|X] = 0, Var(e) = 02, and errors are uncorrelated.

Suppose we use a subset S of the covariates and fit a linear
regression model by OLS. Then:

n
> Cov(f(Xy), Vi|X) = [S]o>.
i=1
In other words, in this setting we have:

2
E[Errin|X] = E[Erry|X] + U512
n
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A model score for linear regression

The last result suggests how we might estimate in-sample
prediction error for linear regression:

» Estimate o using the sample standard deviation of the
residuals on the full fitted model, i.e., with S = {1,...,p};

call this 2.3

» For a given model using a set of covariates S, compute:

2|5

Cp = Errye + 762.

This is called Mallow'’s C,, statistic. It is an estimate of the
prediction error.

3Informally, the reason to use the full fitted model is that this should

provide the best estimate of o2.
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A model score for linear regression

Cp = Erryy + M&?
How to interpret this?
» The first term measures fit to the existing data.
» The second term is a penalty for model complexity.
So the C), statistic balances underfitting and overfitting the data;
for this reason it is sometimes called a model complexity score.

(We will later provide conceptual foundations for this tradeoff in
terms of bias and variance.)
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AIC, BIC

Other model scores:

» Akaike information criterion (AlC). In the linear population
model with normal €, this is equivalent to:

2|8
AnQ <Err»cr + H&2> .
1 n

» Bayesian information criterion (BIC). In the linear population
model with normal ¢, this is equivalent to:

S|1
n (Errtr N Hnng) ,
o n

Both are more general, and derived from a likelihood approach.
(More on that later.)
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AIC, BIC

Note that:

» AIC is the same (up to scaling) as C), in the linear population
model with normal ¢.

» BIC penalizes model complexity more heavily than AIC.
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AIC, BIC in software [x]

In practice, there can be significant differences between the actual
values of C),, AIC, and BIC depending on software; but these don't
affect model selection.

» The estimate of sample variance 2 for Cp will usually be
computed using the full fitted model (i.e., with all p
covariates), while the estimate of sample variance for AIC and
BIC will usually be computed using just the fitted model being
evaluated (i.e., with just |S| covariates). This typically has no
substantive effect on model selection.

» In addition, sometimes AIC and BIC are reported as the
negation of the expressions on the previous slide, so that
larger values are better; or without the scaling coefficient in
front. Again, none of these changes affect model selection.
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Comparisons
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Simulation: Comparing C,, AIC, BIC, CV

Repeat the following steps 10 times:
» For 1 <14 <100, generate X; ~ uniform[—3, 3].
> For 1 <1 <100, generate Y] as:

Y = a1 X; + aoX? — a3 X? + oy X} — a5 XP + as X0 + &,

where g; ~ uniform[—3, 3].

> Forp=1,...,20, we evaluate the model
Y0+ X+ I(X72) + ... + I(X"p) using Cp, AIC, BIC,
and 10-fold cross validation.

How do these methods compare?
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Simulation: Visualizing the data
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Simulation: Comparing C,, AlIC, BIC, CV
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