

Fundamentals of Data Science

Model scores

Ramesh Johari

Model scores

In this lecture we develop an approach to estimation of prediction using limited data (i.e., “in-sample” estimation of prediction error), that relies on underlying assumptions about the model that generated the data.

Model scores

Model scoring uses the following approach:

- ▶ Choose a model, and fit it using the data.
- ▶ Compute a *model score* that uses the sample itself to estimate the prediction error of the model.

By necessity, this approach works only for certain model classes; we show how model scores are developed for linear regression.

Training error

The first idea for estimating prediction error of a fitted model might be to look at the sum of squared error in-sample:

$$\text{Err}_{\text{tr}} = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{f}(\mathbf{X}_i))^2 = \frac{1}{n} \sum_{i=1}^n \hat{r}_i^2.$$

This is called the *training error*, it is the same as $1/n \times \text{sum of squared residuals}$ we studied earlier.

Training error vs. prediction error

Of course, we should expect that training error is *too optimistic* relative to the error on a new test set: after all, the model was specifically tuned to do well on the training data.

To formalize this, we can compare Err_{tr} to Err_{in} , the *in-sample prediction error*:

$$\text{Err}_{\text{in}} = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[(Y - \hat{f}(\vec{X}))^2 | \mathbf{X}, \mathbf{Y}, \vec{X} = \mathbf{X}_i].$$

This is the prediction error if we received new samples of Y corresponding to each covariate vector in our existing data.¹

¹The name is confusing: “in-sample” means that it is prediction error on the covariate vectors \mathbf{X} already in the training data; but note that this measure is the expected prediction error on *new* outcomes for each of these covariate vectors.

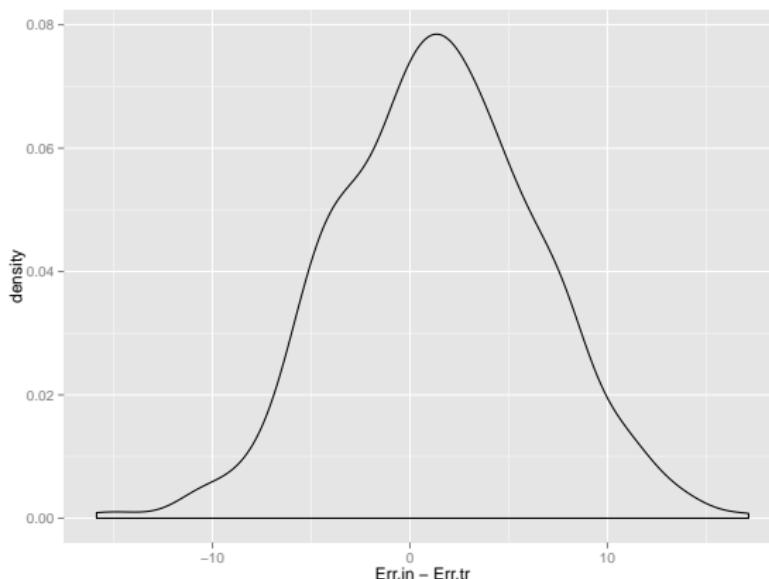
Training error vs. test error

Let's first check how these behave relative to each other.

- ▶ Generate 100 $X_1, X_2 \sim N(0, 1)$, i.i.d.
- ▶ Let $Y_i = 1 + X_{i1} + 2X_{i2} + \varepsilon_i$, where $\varepsilon_i \sim N(0, 5)$, i.i.d.
- ▶ Fit a model \hat{f} using OLS, and the formula $Y \sim 1 + X_1 + X_2$.
- ▶ Compute training error of the model.
- ▶ Generate another 100 *test samples* of Y corresponding to each row of \mathbf{X} , using the same population model.
- ▶ Compute in-sample prediction error of the fitted model on the test set.
- ▶ Repeat this process 500 times, and create a plot of the results.

Training error vs. test error

Results:



Mean of $\text{Err}_{\text{in}} - \text{Err}_{\text{tr}} = 1.42$; i.e., training error is underestimating in-sample prediction error.

Training error vs. test error

If we could somehow *correct* Err_{tr} to behave more like Err_{in} , we would have a way to estimate prediction error on new data (at least, for covariates \mathbf{X}_i we have already seen).

Here is a key result towards that correction.²

Theorem

$$\mathbb{E}[\text{Err}_{\text{in}}|\mathbf{X}] = \mathbb{E}[\text{Err}_{\text{tr}}|\mathbf{X}] + \frac{2}{n} \sum_{i=1}^n \text{Cov}(\hat{f}(\mathbf{X}_i), Y_i|\mathbf{X}).$$

In particular, if $\text{Cov}(\hat{f}(\mathbf{X}_i), Y_i|\mathbf{X}) > 0$, then training error underestimates test error.

²This result holds more generally for other measures of prediction error, e.g., 0-1 loss in binary classification.

Training error vs. test error: Proof [*]

Proof. If we expand the definitions of Err_{tr} and Err_{in} , we get:

$$\begin{aligned}\text{Err}_{\text{in}} - \text{Err}_{\text{tr}} &= \frac{1}{n} \sum_{i=1}^n \left(\mathbb{E}[Y^2 | \vec{X} = \mathbf{X}_i] - Y_i^2 \right. \\ &\quad \left. - 2(\mathbb{E}[Y | \vec{X} = \mathbf{X}_i] - Y_i) \hat{f}(\mathbf{X}_i) \right)\end{aligned}$$

Now take expectations over \mathbf{Y} . Note that:

$$\mathbb{E}[Y^2 | \mathbf{X}, \vec{X} = \mathbf{X}_i] = \mathbb{E}[Y_i^2 | \mathbf{X}],$$

since both are the expectation of the square of a random outcome with associated covariate \mathbf{X}_i . So we have:

$$\mathbb{E}[\text{Err}_{\text{in}} - \text{Err}_{\text{tr}} | \mathbf{X}] = -\frac{2}{n} \sum_{i=1}^n \mathbb{E}\left[(\mathbb{E}[Y | \vec{X} = \mathbf{X}_i] - Y_i) \hat{f}(\mathbf{X}_i) | \mathbf{X}\right].$$

Training error vs. test error: Proof [*]

Proof (continued): Also note that $\mathbb{E}[Y|\vec{X} = \mathbf{X}_i] = \mathbb{E}[Y_i|\mathbf{X}]$, for the same reason. Finally, since:

$$\mathbb{E}[Y_i - \mathbb{E}[Y_i|\mathbf{X}]|\mathbf{X}] = 0,$$

we get:

$$\begin{aligned}\mathbb{E}[\text{Err}_{\text{in}} - \text{Err}_{\text{tr}}|\mathbf{X}] &= \frac{2}{n} \sum_{i=1}^n \left(\mathbb{E} \left[(Y_i - \mathbb{E}[Y|\vec{X} = \mathbf{X}_i]) \hat{f}(\mathbf{X}_i) \middle| \mathbf{X} \right] \right. \\ &\quad \left. - \mathbb{E}[Y_i - \mathbb{E}[Y_i|\mathbf{X}]|\mathbf{X}] \mathbb{E}[\hat{f}(\mathbf{X}_i) \middle| \mathbf{X}] \right),\end{aligned}$$

which reduces to $(2/n) \sum_{i=1}^n \text{Cov}(\hat{f}(\mathbf{X}_i), Y_i|\mathbf{X})$, as desired.

The theorem's condition

What does $\text{Cov}(\hat{f}(\mathbf{X}_i), Y_i | \mathbf{X}) > 0$ mean?

In practice, for any “reasonable” modeling procedure, we should expect our predictions to be positively correlated with our outcome.

Example: Linear regression

Assume a linear population model $Y = \vec{X}\beta + \varepsilon$, where $\mathbb{E}[\varepsilon|\vec{X}] = 0$, $\text{Var}(\varepsilon) = \sigma^2$, and errors are uncorrelated.

Suppose we use a subset S of the covariates and fit a linear regression model by OLS. Then:

$$\sum_{i=1}^n \text{Cov}(\hat{f}(\mathbf{X}_i), Y_i | \mathbf{X}) = |S|\sigma^2.$$

In other words, in this setting we have:

$$\mathbb{E}[\text{Err}_{\text{in}} | \mathbf{X}] = \mathbb{E}[\text{Err}_{\text{tr}} | \mathbf{X}] + \frac{2|S|}{n}\sigma^2.$$

A model score for linear regression

The last result suggests how we might estimate in-sample prediction error for linear regression:

- ▶ Estimate σ^2 using the sample standard deviation of the residuals on the full fitted model, i.e., with $S = \{1, \dots, p\}$; call this $\hat{\sigma}^2$.³
- ▶ For a given model using a set of covariates S , compute:

$$C_p = \text{Err}_{\text{tr}} + \frac{2|S|}{n} \hat{\sigma}^2.$$

This is called *Mallow's C_p statistic*. It is an estimate of the prediction error.

³Informally, the reason to use the full fitted model is that this should provide the best estimate of σ^2 .

A model score for linear regression

$$C_p = \text{Err}_{\text{tr}} + \frac{2|S|}{n} \hat{\sigma}^2.$$

How to interpret this?

- ▶ The first term measures fit to the existing data.
- ▶ The second term is a penalty for *model complexity*.

So the C_p statistic balances underfitting and overfitting the data; for this reason it is sometimes called a *model complexity score*.

(We will later provide conceptual foundations for this tradeoff in terms of *bias* and *variance*.)

AIC, BIC

Other model scores:

- ▶ *Akaike information criterion* (AIC). In the linear population model with *normal* ε , this is equivalent to:

$$\frac{n}{\hat{\sigma}^2} \left(\text{Err}_{\text{tr}} + \frac{2|S|}{n} \hat{\sigma}^2 \right).$$

- ▶ *Bayesian information criterion* (BIC). In the linear population model with *normal* ε , this is equivalent to:

$$\frac{n}{\hat{\sigma}^2} \left(\text{Err}_{\text{tr}} + \frac{|S| \ln n}{n} \hat{\sigma}^2 \right).$$

Both are more general, and derived from a *likelihood* approach.
(More on that later.)

AIC, BIC

Note that:

- ▶ AIC is the same (up to scaling) as C_p in the linear population model with normal ε .
- ▶ BIC penalizes model complexity more heavily than AIC.

AIC, BIC in software [*]

In practice, there can be significant differences between the actual values of C_p , AIC, and BIC depending on software; but these don't affect model selection.

- ▶ The estimate of sample variance $\hat{\sigma}^2$ for C_p will usually be computed using the full fitted model (i.e., with all p covariates), while the estimate of sample variance for AIC and BIC will usually be computed using just the fitted model being evaluated (i.e., with just $|S|$ covariates). This typically has no substantive effect on model selection.
- ▶ In addition, sometimes AIC and BIC are reported as the *negation* of the expressions on the previous slide, so that larger values are better; or without the scaling coefficient in front. Again, none of these changes affect model selection.

Comparisons

Simulation: Comparing C_p , AIC, BIC, CV

Repeat the following steps 10 times:

- ▶ For $1 \leq i \leq 100$, generate $X_i \sim \text{uniform}[-3, 3]$.
- ▶ For $1 \leq i \leq 100$, generate Y_i as:

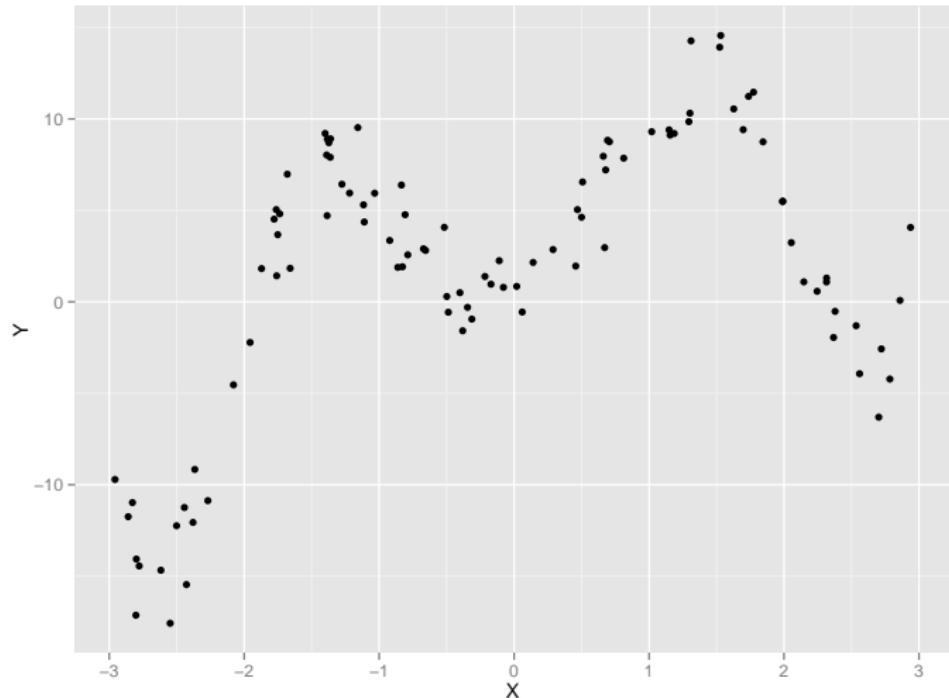
$$Y_i = \alpha_1 X_i + \alpha_2 X_i^2 - \alpha_3 X_i^3 + \alpha_4 X_i^4 - \alpha_5 X_i^5 + \alpha_6 X_i^6 + \varepsilon_i,$$

where $\varepsilon_i \sim \text{uniform}[-3, 3]$.

- ▶ For $p = 1, \dots, 20$, we evaluate the model $Y \sim 0 + X + I(X^2) + \dots + I(X^p)$ using C_p , AIC, BIC, and 10-fold cross validation.

How do these methods compare?

Simulation: Visualizing the data



Simulation: Comparing C_p , AIC, BIC, CV

