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Overview

Model selection refers to the process of comparing a variety of
models (using, e.g., model complexity scores, cross validation, or
validation set error.

Here we describe a few strategies for model selection using model
scores, then compare them in the context of a real dataset.

Throughout, our goal is prediction. Therefore we compare models
through estimates of their generalization error (“model scores”):
e.g., training error (sum of squared residuals), R2, Cp, AIC, BIC,
cross validation, validation set error, etc.
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Model selection: Goals

There are two types of qualitative goals in model selection:

I Minimize prediction error. This is our primary goal in this
lecture.

I Interpretability. We will have more to say about this in the
next unit of the class.

Both goals often lead to a desire for “parsimony”: roughly, a desire
for smaller models over more complex models.
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Subset selection

Suppose we have p covariates available, and we want to find which
subset to include in a linear regression fit by OLS.

One approach is:

I For each subset S ⊂ {1, . . . , p}, compute the OLS solution
with just the subset of covariates in S.

I Select the subset that minimizes the chosen model score.

Implemented in R via the leaps package (with Cp or R2 as model
score).

Problem: Computational complexity scales exponentially with
number of covariates.
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Forward stepwise selection

Another approach:

1. Start with S = ∅.
2. Add the single covariate to S that leads to greatest reduction

in model score.

3. Repeat steps 1-2.

Implemented in R via the step function (with AIC or related
model scores).

The computational complexity of this is only quadratic in the
number of covariates (and often much less).
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Backward stepwise selection

Another approach:

1. Start with S = {1, . . . , p}.
2. Delete the single covariate from S that leads to greatest

reduction in model score.

3. Repeat steps 1-2.

Also implemented via step in R.

Also quadratic computational complexity, though it can be worse
than forward stepwise selection when there are many covariates.
(In fact, backward stepwise selection can’t be used when n ≤ p —
why?)
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Stepwise selection: A warning

When applying stepwise regression, you are vulnerable to the same
issues discussed earlier:

I The same data is being used repeatedly to make selection
decisions.

I In general, this will lead to downward biased estimates of your
prediction error.

The train-validate-test methodology can mitigate this somewhat,
by providing an objective comparison.

To reiterate: Practitioners often fail to properly isolate test data
during the model building phase!
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Example: Fuel economy dataset
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Fuel economy dataset

Data on fuel economy of 2016 vehicles.

From: https://www.fueleconomy.gov/feg/download.shtml

(via DASL from Data Description, Inc.)
Contains data on fuel economy of 1211 U.S. vehicles in 2016.
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Forward stepwise regression

> fm.lower = lm(data = fuel_economy.df, CombinedMPG ~ 1)

> fm.upper = lm(data = fuel_economy.df, CombinedMPG ~ .)

> step(fm.lower,

scope = list(lower = fm.lower,

upper = fm.upper),

direction = "forward")
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Forward stepwise regression: Step 1

Start: AIC=4158.86

CombinedMPG ~ 1

Df Sum of Sq RSS AIC

+ CityMPG 1 36336 1152 -56.3

+ HighwayMPG 1 34459 3029 1114.3

+ CityCO2 1 33259 4229 1518.4

+ CombCO2 1 33248 4240 1521.7

+ Car.line 771 35808 1680 1940.5

+ HwyCO2 1 30335 7153 2154.9

+ Displacement 1 22487 15001 3051.7

+ Cylinders 1 20754 16735 3184.1

+ Transmission 23 12267 25222 3724.9

+ Division 45 11870 25618 3787.8

+ Class 10 8758 28731 3856.7

+ Mfr 24 7970 29518 3917.4

+ Gears 1 5195 32294 3980.2

<none> 37488 4158.9

+ Sample 1 40 37448 4159.6
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Forward stepwise regression: Step 2

Step: AIC=-56.34

CombinedMPG ~ CityMPG

Df Sum of Sq RSS AIC

+ HighwayMPG 1 983.00 169.13 -2377.90

+ Car.line 771 1049.33 102.81 -1440.75

+ HwyCO2 1 724.64 427.50 -1254.96

+ CombCO2 1 535.50 616.63 -811.34

+ CityCO2 1 315.62 836.51 -442.02

+ Class 10 211.45 940.68 -281.89

+ Division 45 240.43 911.71 -249.78

+ Transmission 23 206.21 945.93 -249.16

+ Displacement 1 165.09 987.04 -241.63

+ Mfr 24 160.98 991.16 -190.60

+ Cylinders 1 117.02 1035.11 -184.05

+ Gears 1 65.20 1086.93 -124.89

<none> 1152.13 -56.34

+ Sample 1 0.01 1152.12 -54.36

13 / 15



Forward stepwise regression: Step 3

Step: AIC=-2377.9

CombinedMPG ~ CityMPG + HighwayMPG

Df Sum of Sq RSS AIC

+ CityCO2 1 12.083 157.047 -2465.7

+ CombCO2 1 9.524 159.605 -2446.1

+ Displacement 1 8.221 160.908 -2436.2

+ Cylinders 1 5.697 163.433 -2417.4

+ Class 10 5.935 163.194 -2401.2

+ HwyCO2 1 1.320 167.809 -2385.4

+ Division 45 12.223 156.906 -2378.7

<none> 169.129 -2377.9

+ Sample 1 0.065 169.064 -2376.4

+ Gears 1 0.032 169.097 -2376.1

+ Transmission 23 5.403 163.727 -2371.2

+ Mfr 24 5.508 163.622 -2370.0

+ Car.line 771 120.153 48.976 -2336.7
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Forward stepwise regression: Final output

Call:

lm(formula = CombinedMPG ~ CityMPG + HighwayMPG + CityCO2 +

HwyCO2 + CombCO2 + Cylinders + Displacement,

data = fuel_economy.df)

Coefficients:

(Intercept) CityMPG HighwayMPG CityCO2

1.10126 0.59694 0.37391 0.01265

HwyCO2 CombCO2 Cylinders

0.01914 -0.03182 0.04376

Displacement

-0.05049

Backward stepwise regression yields the same result. Is this an
interpretable model?
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