

Fundamentals of Data Science

Model selection using model scores

Ramesh Johari

Model selection

Overview

Model selection refers to the process of comparing a variety of models (using, e.g., model complexity scores, cross validation, or validation set error).

Here we describe a few strategies for model selection using model scores, then compare them in the context of a real dataset.

Throughout, *our goal is prediction*. Therefore we compare models through estimates of their generalization error (“model scores”): e.g., training error (sum of squared residuals), R^2 , C_p , AIC, BIC, cross validation, validation set error, etc.

Model selection: Goals

There are two types of qualitative goals in model selection:

- ▶ *Minimize prediction error.* This is our primary goal in this lecture.
- ▶ *Interpretability.* We will have more to say about this in the next unit of the class.

Both goals often lead to a desire for “parsimony”: roughly, a desire for smaller models over more complex models.

Subset selection

Suppose we have p covariates available, and we want to find which subset to include in a linear regression fit by OLS.

One approach is:

- ▶ For each subset $S \subset \{1, \dots, p\}$, compute the OLS solution with just the subset of covariates in S .
- ▶ Select the subset that minimizes the chosen model score.

Implemented in R via the `leaps` package (with C_p or R^2 as model score).

Problem: Computational complexity scales exponentially with number of covariates.

Forward stepwise selection

Another approach:

1. Start with $S = \emptyset$.
2. Add the single covariate to S that leads to greatest reduction in model score.
3. Repeat steps 1-2.

Implemented in R via the `step` function (with AIC or related model scores).

The computational complexity of this is only quadratic in the number of covariates (and often much less).

Backward stepwise selection

Another approach:

1. Start with $S = \{1, \dots, p\}$.
2. Delete the single covariate from S that leads to greatest reduction in model score.
3. Repeat steps 1-2.

Also implemented via `step` in R.

Also quadratic computational complexity, though it can be worse than forward stepwise selection when there are many covariates.
(In fact, backward stepwise selection can't be used when $n \leq p$ — why?)

Stepwise selection: A warning

When applying stepwise regression, you are vulnerable to the same issues discussed earlier:

- ▶ The same data is being used repeatedly to make selection decisions.
- ▶ In general, this will lead to downward biased estimates of your prediction error.

The train-validate-test methodology can mitigate this somewhat, by providing an objective comparison.

To reiterate: Practitioners often fail to properly isolate test data during the model building phase!

Example: Fuel economy dataset

Fuel economy dataset

Data on fuel economy of 2016 vehicles.

From: <https://www.fueleconomy.gov/feg/download.shtml>
(via DASL from Data Description, Inc.)

Contains data on fuel economy of 1211 U.S. vehicles in 2016.

Forward stepwise regression

```
> fm.lower = lm(data = fuel_economy.df, CombinedMPG ~ 1)
> fm.upper = lm(data = fuel_economy.df, CombinedMPG ~ .)
> step(fm.lower,
       scope = list(lower = fm.lower,
                     upper = fm.upper),
       direction = "forward")
```

Forward stepwise regression: Step 1

Start: AIC=4158.86

CombinedMPG ~ 1

	Df	Sum of Sq	RSS	AIC
+ CityMPG	1	36336	1152	-56.3
+ HighwayMPG	1	34459	3029	1114.3
+ CityCO2	1	33259	4229	1518.4
+ CombCO2	1	33248	4240	1521.7
+ Car.line	771	35808	1680	1940.5
+ HwyCO2	1	30335	7153	2154.9
+ Displacement	1	22487	15001	3051.7
+ Cylinders	1	20754	16735	3184.1
+ Transmission	23	12267	25222	3724.9
+ Division	45	11870	25618	3787.8
+ Class	10	8758	28731	3856.7
+ Mfr	24	7970	29518	3917.4
+ Gears	1	5195	32294	3980.2
<none>			37488	4158.9
+ Sample	1	40	37448	4159.6

Forward stepwise regression: Step 2

Step: AIC=-56.34

CombinedMPG ~ CityMPG

	Df	Sum of Sq	RSS	AIC
+ HighwayMPG	1	983.00	169.13	-2377.90
+ Car.line	771	1049.33	102.81	-1440.75
+ HwyCO2	1	724.64	427.50	-1254.96
+ CombCO2	1	535.50	616.63	-811.34
+ CityCO2	1	315.62	836.51	-442.02
+ Class	10	211.45	940.68	-281.89
+ Division	45	240.43	911.71	-249.78
+ Transmission	23	206.21	945.93	-249.16
+ Displacement	1	165.09	987.04	-241.63
+ Mfr	24	160.98	991.16	-190.60
+ Cylinders	1	117.02	1035.11	-184.05
+ Gears	1	65.20	1086.93	-124.89
<none>			1152.13	-56.34
+ Sample	1	0.01	1152.12	-54.36

Forward stepwise regression: Step 3

Step: AIC=-2377.9

CombinedMPG ~ CityMPG + HighwayMPG

	Df	Sum of Sq	RSS	AIC
+ CityCO2	1	12.083	157.047	-2465.7
+ CombCO2	1	9.524	159.605	-2446.1
+ Displacement	1	8.221	160.908	-2436.2
+ Cylinders	1	5.697	163.433	-2417.4
+ Class	10	5.935	163.194	-2401.2
+ HwyCO2	1	1.320	167.809	-2385.4
+ Division	45	12.223	156.906	-2378.7
<none>			169.129	-2377.9
+ Sample	1	0.065	169.064	-2376.4
+ Gears	1	0.032	169.097	-2376.1
+ Transmission	23	5.403	163.727	-2371.2
+ Mfr	24	5.508	163.622	-2370.0
+ Car.line	771	120.153	48.976	-2336.7

Forward stepwise regression: Final output

Call:

```
lm(formula = CombinedMPG ~ CityMPG + HighwayMPG + CityCO2 +  
    HwyCO2 + CombCO2 + Cylinders + Displacement,  
    data = fuel_economy.df)
```

Coefficients:

	CityMPG	HighwayMPG	CityCO2
(Intercept)	1.10126	0.59694	0.01265
HwyCO2	CombCO2	Cylinders	
0.01914	-0.03182	0.04376	
Displacement			
-0.05049			

Backward stepwise regression yields the same result. Is this an interpretable model?