MS&E 226: Fundamentals of Data Science
Lecture 10: The bootstrap
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Recall: Limitations of asymptotic theory

In Lecture 9, we used asymptotic normality to construct standard errors and
confidence intervals for estimators like the sample mean, OLS coefficients, and
logistic regression coefficients.

But this approach has limitations:

P> Asymptotic theory requires “large” sample sizes; with small n, the normal
approximation may be poor.

P Assumptions like homoskedasticity (constant error variance) may be
violated.

P> For complex estimators, closed-form expressions for standard errors may
not exist.

Question: Is there a more flexible, assumption-light approach to quantifying
uncertainty?
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The bootstrap: A simulation-based approach

The bootstrap provides a practical alternative to asymptotic theory.

Key idea: Instead of relying on theoretical approximations, we use the data itself
to simulate the sampling distribution.

This lecture introduces the bootstrap as a flexible tool for computing standard
errors and confidence intervals in practice.
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Resampling and the bootstrap



Idea behind the bootstrap

The basic idea behind the bootstrap is straightforward:
P The data Y are a sample from the population model.
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The basic idea behind the bootstrap is straightforward:
P The data Y are a sample from the population model.
P> If we resample (with replacement) from Y, this “mimics” sampling from the
population model.
In the bootstrap, we draw B new samples (of size n) from the original data, and
treat each of these as a “parallel universe.”

We can then pretend this is the sampling distribution, and compute what we
want (e.g., standard errors, confidence intervals, etc.).



Why bootstrap?

We've already seen asymptotic normality can give us standard errors and
confidence intervals.

Why do we need the bootstrap?
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Why bootstrap?

We've already seen asymptotic normality can give us standard errors and
confidence intervals.
Why do we need the bootstrap?

P Small samples: When n is small, asymptotic approximations may be
inaccurate.

P Violated assumptions: Model assumptions (e.g., homoskedasticity,
normality) may not hold.

P Complex estimators: For estimators beyond simple means or regression
coefficients (e.g., medians, quantiles, ratios), closed-form standard errors
may not exist.

The bootstrap provides a practical, general-purpose tool that requires minimal
assumptions.
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The bootstrap algorithm



The bootstrap algorithm
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We are given a sample Y of n observations.

We want to estimate the sampling distribution of a statistic T(Y), i.e., a quantity
that depends on the data.

For1 <b < B:

P> Draw n samples uniformly at random, with replacement, from Y. Denote by
Y® the samples in the b'th “parallel universe.”

P> Compute value of T in the b'th “parallel universe”; call this Tj,.

The histogram (i.e., empirical distribution) of {7}, 1 < b < B} is an estimate of the
sampling distribution of T. We call this the bootstrap distribution.



The bootstrap algorithm

A picture:
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An analogy

The following analogy is helpful to keep in mind. For the sampling distribution
we have:
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An analogy

The following analogy is helpful to keep in mind. For the sampling distribution
we have:

Bootstrapping treats the sample Y as if it represents the true population model:
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Limitations and assumptions

For the bootstrap distribution to accurately approximate the sampling
distribution:
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Limitations and assumptions

For the bootstrap distribution to accurately approximate the sampling
distribution:

P> Representative sample: The original sample Y should be i.i.d. draws from
the population, with no sampling bias, and n large enough to capture the
population’s structure.

P> Sufficient bootstrap samples: B should be large enough that resampling
variability is negligible (typically B > 10,000).

P> Appropriate statistic: The bootstrap can fail for extreme value statistics (e.g.,
maximum, minimum) or when the statistic is highly sensitive to outliers.

Despite these limitations, for standard tasks like estimating standard errors of
means, medians, or regression coefficients, the bootstrap is reliable and widely
used.
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Standard errors from the bootstrap

We use the bootstrap distribution just like we would use the true sampling
distribution.

The bootstrap estimate of the standard error is:

B
SEgs = \J -1 DT, -T2,
b=1
where T = (1/B) Y1, T, is the mean of the bootstrap distribution.

In other words, §I\EBS is simply the sample standard deviation of the bootstrap
distribution.
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Confidence intervals

Two approaches to building 95% confidence intervals from the bootstrap:
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Confidence intervals

Two approaches to building 95% confidence intervals from the bootstrap:

P The normal interval: [T(Y) — 1.96§\EBS, T(Y)+ 1.96§I\EBS]. This approach
assumes that the sampling distribution of T(Y) is normal, and uses the
standard error accordingly.

P> The percentile interval: Let T, be the ¢'th quantile of the bootstrap
distribution. Then the 95th percentile bootstrap interval is: [T y»5, Tp.975]-

In general the percentile interval is preferred when the sampling
distribution is symmetric, but not necessarily normal. (Many other types of
intervals as well...)
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Example 1: Mean of flight arrival delays
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I sampled 500 flights from all flights in 2024 that had an arrival delay recorded
with the Bureau of Transportation Statistics.

The mean delay in this sample was i = Y = 11.68 minutes, and the sample
standard deviation was 6 = 74.45.

If we use the central limit theorem (see last lecture), the resulting sample mean
standard error is approximately 6/+/n = 3.329.

What does the bootstrap suggest?



Example 1: Mean of flight arrival delays

Code to run bootstrap in R (using boot library):

# Using the boot package
mean_boot <- function(data, indices) {
return(mean(data[indices]))

}

# Run bootstrap with B = 10000
boot_mean_result <- boot(flight_sample, mean_boot, R = 10000)

boot_mean_result$t contains the means across parallel universes. Use boot.ci
for confidence intervals.
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Example 1: Mean of flight arrival delays

Results:
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S/EBS = 3.315, very close to the normal approximation (because the central limit
theorem is pretty good here).
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Example 2: Median of flight arrival delays

For the median, we don't have a closed form expression for the standard error,
but we can use the bootstrap. Results:
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Count

§\EBS = 1.163. This is much smaller than the sample mean estimated SE (why?)

Note also that the actual sample median was =5 (matching the population

median).
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Example 3: Funnels (survival analysis)

Suppose as an online retailer you have a three stage checkout flow: customers
(1) add an item to their cart, (2) enter their credit card info, and (3) hit “Purchase”.

In practice, customers might abandon before completing these activities.
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Example 3: Funnels (survival analysis)

Suppose as an online retailer you have a three stage checkout flow: customers
(1) add an item to their cart, (2) enter their credit card info, and (3) hit “Purchase”.

In practice, customers might abandon before completing these activities.

Suppose you've collected data on n customers, where Y; € {1,2,3} denotes the
latest stage the customer completed.

Let y; be the probability that a customer that completes stage s will also

complete stage s + 1, for s = 1,2. We estimate these as follows:
NS L NN AL
TR 2SS NI TR ATk

But standard errors are not easy to compute, since these are quotients; the
bootstrap is an easy approach to get standard errors.
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Example 4: Block bootstrap

This example came up when working on a project with Netflix; it is a common
example of computing standard errors correctly when you have clustered
observations.

Itis also a useful example to see how you can sometimes apply the bootstrap
even in settings where the data is not perfectly independent and identically
distributed.

17725



Example 4: Block bootstrap
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Suppose we collect data on viewing behavior of n = 1000 users. Each user i has
k; sessions; and the average bit rate of session j of useriis r;;.

So ourdatais {r;;,1 <i <1000,1<j <k;}.

ijo
| generated synthetic data where each user generated 10 sessions; for each i,
user i's session had mean rate that is y; ~ Exp(1/1000); and each of the k;
sessions of user i are of rate /' (y;, 1).

We estimate the average delivered bit rate as:

k.
Xici E,-;l Fij
izt ki

i =

This estimate is 960.6.



Example 4: Block bootstrap

What is the standard error of this estimate? Naive approach: take sample
standard deviation of the per session bit rates, divided by square root of
number of sessions. For my synthetic dataset this gave SE = 9.35.

This is not quite right however, because sessions are not independent: sessions
belonging to the same user are likely to have similar bit rate.

How to adjust for this correlation?
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Example 4: Block bootstrap
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Recreate the data generating process with a block bootstrap:
> Sample users (n = 1000) with replacement.
P> Each time a user is sampled, include all of their sessions.

P> The bootstrap distribution is the resulting histogram of 4%, over each
bootstrap sample b.

Using this approach gave a standard error of §I\EBS = 22.67 (much larger).



Bootstrap for regression



Linear regression via OLS
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Given data X and Y, suppose we want bootstrap standard errors for OLS
coefficients.

For1<b < B:
P> Draw n samples (outcome and corresponding covariates) uniformly at
random, with replacement, from (X, Y). (This is called case resampling.)
P> Given the resulting data in the b'th sample, run OLS and compute the
resulting coefficient vector fi(b).

This gives the bootstrap distribution of B, and we can use it to, e.g., compute
standard errors or confidence intervals (or even bias) for each of the coefficients.



Example 5: Heteroskedastic data

Suppose for 1 <i <100, X; ~ #(0,1), and ¥; = X, +¢;, where ¢; ~ #/(0, X}). This
data exhibits heteroskedasticity: the error variance is not constant.

In this case the linear normal model assumptions are violated. What is the effect
on the standard error that R reports?

We use the bootstrap to find out.
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Example 5: Heteroskedastic data

Here is the code to run the bootstrap:

df = data.frame(X,Y)

coef_boot <- function(data, indices) {
fit <- Im(Y ~ 1 + X, data = data[indices, 1)
return(coef(fit))

3

# Run bootstrap
boot_reg_result <- boot(df, coef_boot, R = 10000)
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Example 5: Heteroskedastic data
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If we run Im(data = df, Y ~ 1 + X), then R reports a standard error of 0.209
on the coefficient on X, which is 1.1167.

But using the bootstrap approach, we compute a standard error of 0.423!

Why the difference? R's standard error assumes homoskedasticity (constant
error variance). When this assumption is violated, as here, the reported standard
error is too optimistic.

The bootstrap correctly accounts for the heteroskedasticity by resampling the
actual data, giving a more accurate (and larger) standard error.



Other applications

The bootstrap is an incredibly flexible tool, with many variations developed to
make it applicable in a wide range of settings.

For example, it can be used to measure variability in model estimates for more
other modeling strategies (e.g., ridge, lasso).

In fact, it can even be used to estimate test error in a prediction setting (instead
of cross validation).”

"The basic idea here is that bias and variance are measured over “parallel universes” of the
training data; the bootstrap let's us simulate these parallel universes.
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