MS&E 226: Fundamentals of Data Science
Lecture 11: Hypothesis testing
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Introduction to hypothesis testing



The two goals of parametric inference

Recall the following two goals
P> Estimation. What is our best guess for the true parameters of the population
model (e.g., the population mean)?
P> Quantifying uncertainty. How uncertain are we in our guess?

So far we've talked about quantifiying uncertainty via standard errors and
confidence intervals.

Today we'll talk about a different way to quantify uncertainty: hypothesis testing.
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Motivating example: Flight delays
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Suppose we draw a sample of n = 500 flights and obtain:
P Sample mean delay: Y = 11.68 minutes
P Sample standard deviation: é = 74.45 minutes

P Estimated SE: SE = 6/+/n = 3.33 minutes

Question: s our evidence consistent with the hypothesis that the true
population mean u is zero? l.e., is the average flight is exactly on time?



The hypothesis testing “recipe”

We want to test whether a specific claim about a parameter is plausible, given
our data.

The hypothesis testing “recipe”:
P> Suppose the claim were true. This is the null hypothesis, denoted H,,.
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The hypothesis testing “recipe”

We want to test whether a specific claim about a parameter is plausible, given
our data.
The hypothesis testing “recipe”:

P> Suppose the claim were true. This is the null hypothesis, denoted H,,.

P> Across many “parallel universes” (the sampling distribution), how likely
would we be to observe data as extreme as what we actually saw?
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The hypothesis testing “recipe”
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We want to test whether a specific claim about a parameter is plausible, given
our data.
The hypothesis testing “recipe”:

P> Suppose the claim were true. This is the null hypothesis, denoted H,,.

P> Across many “parallel universes” (the sampling distribution), how likely
would we be to observe data as extreme as what we actually saw?

P> If very unlikely, we reject the null hypothesis.

Virtually all hypothesis tests work this way!



Example: Testing if mean delay is zero
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Null hypothesis Hy: u = 0 (true population mean is zero)
Alternative hypothesis H,: u # 0 (true population mean is not zero)

From the CLT, we know that for large n, the sampling distribution is
approximately normal:

i ~2
Y ~ N (u,SE ).

Question: If H, were true (u = 0), how likely are we to see Y| > 11.68?



The t statistic



Standardizing the sample mean
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To test Hy, : u = uy, we construct the following test statistic,
also called a t statistic:

Y —py

G
From the CLT, we know that Y has a sampling distribution that is approximately
N (u, §I\Ez) for large n.

f=

Therefore: If Hy is true (i = yg), then for large n,
the sampling distribution of 7 is approximately .#(0, 1).



The t statistic

We write 7 for our observed value of our t statistic.

We can use 7 to “test” whether we believe the null hypothesis Hy : u = y is true:
P If H, is true, then 7 should be “typical” for a #/(0, 1) random variable.
P If H is false, then 7 will tend to be “large” in absolute value.
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Example: Flight delays

For our flight delays example:

P Y =1168
P SE =333

Test statistic: i
Y/—\O _ 1168 -0 _ 351
SE 3.33

Question: Is this plausible if Hy : u = 0is true, i.e., if the sampling distribution of
fis /(0,1)?

f=
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p-values



The p-value

The p-value is the probability of observing a test statistic as extreme as what we
observed, if the null hypothesis were true.

p-value = P(|Z| 2 |i]),
where Z ~ #(0,1).
The p-value answers the question: “If H, is true, is your observation 7 plausible?”

For our example: p-value = P(|Z| > 3.51) ~ 0.0004.
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Interpreting the p-value

p-value ~ 0.0004:

P> interpretation: If the true mean delay were zero, there’s only a 0.04% chance
we would observe a sample mean as extreme as 11.68 minutes.

P> This is very unlikely, i.e., our evidence is inconsistent with the truth of H,,.
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How NOT to interpret the p-value
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Important: The p-value IS NOT the probability that H, is true!

We cannot make statements about the “chance” of H, being true, because the
true u is not random.

The p-value:
P> IS: Probability of observing a test statistic as extreme as 7, given H is true.
P> IS NOT: Probability H,, is true, given that you observed 7.

The first is a frequentist statement; the second is a Bayesian statement, which we
will see later in the course.



Rejecting the null:
Hypothesis testing as binary classification



Can we reject the null?
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In hypothesis testing, we determine whether the evidence allows us to reject the
nU” HO

Formally we choose a significance level a (e.g., a = 0.053).
Decision rule: Reject H,, at significance level a if p-value < a.

A smaller « means we need stronger evidence (more extreme 7 ) to reject the
null.

For our example, p-value = 0.0004 < 0.05 =
we reject H, : p = 0 at significance level a = 0.05.



A note on terminology [*]
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The statistic we are using is called a t statistic; it is also sometimes called a
studentized statistic. (“Studentizing” refers to normalizing by the estimated

standard error §\E.)

The hypothesis test defined by the decision rule on the preceding slide is often
referred to as a “t-test”, though the formal definition of a t-test requires assuming
the data generating process is exactly normal (not asymptotically normal). (See
appendix for more on t-tests.)

Another name for the rule on the previous slide is the Wald test.



Hypothesis testing as classification

This decision rule makes hypothesis testing into binary classification!

The “truth” (unknown):
P H,istrue
P H,is false
Our decision (based on data):
P Reject H,
P Don't reject H,

Just like a classifier, we can make mistakes...
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Two types of errors

In hypothesis testing, we can make two types of mistakes:

‘ Reject H, ‘ Don't Reject H,,
H, True | False Positive | True Negative
H, False | True Positive | False Negative

P Type | error (False Positive): Reject H,, when it's actually true
P Type Il error (False Negative): Fail to reject H, when it's actually false
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The meaning of “significance”
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Recall we called a the “significance level”.

Key result: The significance level a is exactly the false positive (Type | error)
probability!
a = P(reject Hy|H, true).

In other words, a is a “tuning knob” that controls how often we make false
positive errors.



Why is « = false positive probability?

If we reject Hy when the p-value < a ...
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Why is « = false positive probability?

If we reject Hy when the p-value < a ...

then we reject H; if the chance of seeing a test statistic as extreme as our
observation is < a...
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Why is « = false positive probability?

If we reject Hy when the p-value < a ...

then we reject H; if the chance of seeing a test statistic as extreme as our
observation is < a...

which has chance exactly « if H; is true!

So if we reject when p-value < 0.05, we reject with probability 0.05 when H, is
true = 5% false positive probability.
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Power

Power is the probability of correctly rejecting H, when it’s false - informally:
Power = P(reject Hy|H,, false) = 1 — P(Type Il error).

Problem: H, can be false in many ways! Power depends on what the true u
actually is.

To formally compute power, we need a specific alternative u = u, # py; see
appendix.
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Tradeoff between Type | and Type Il errors

Reducing a (being more conservative):

P> Decreases false positive probability

P> Increases false negative probability, i.e., decreases power
Increasing a (being less conservative):

P> increases false positive probability

P> Decreases false negative probability, i.e., increases power
This is the fundamental tradeoff in hypothesis testing!
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Increasing power: The sample size

When the truth is p, # u,, then for large n the t statistic for testing Hy : u = py
has sampling distribution that is approximately:

”(ﬂ;w )

With p, # pgy, as n — oo, the magnitude of this statistic - oo.
So at any a, we become increasingly likely to (correctly) reject the null!

In other words: power increases as the sample size grows.
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Connection to confidence intervals



Equivalent decision rule
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The t statistic has approximately a /#/(0, 1) distribution under H,,.

Therefore the decision rule “reject if the p-value is < a” is equivalent to rejecting
H, when:

|?| > Za/27
where z,, is the 1 — a/2 quantile of the (0, 1) distribution.
For a = 0.05: Z0.025 ~ 1.96.

For our example: |3.51] > 1.96 = Reject H,, at significance level a = 0.05.



Duality between tests and confidence intervals
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There is an important connection between hypothesis tests and confidence
intervals:

Note that we reject the null with a = 0.05 exactly when |7] > 1.96.
Since 7= (Y — ,uo)lg\E, this is equivalent to rejecting the null exactly when:
po & [Y — 1.965E, Y + 1.965E]

l.e., we reject Hy : u = py if py is not in the 95% confidence interval.



General « [*]

Recall the (1 —a) Clis: [Y — za,2§E,7+ za/zg\E].
We reject Hyy : p = pg when |7 > z,,, which means:
Y —

o~

SE

> Zy/-

This is equivalent to: |Y — | > za,ZS/E.

As a result, a significance level a test rejects H, : u = u if and only if u, is not in
the (1 — &) confidence interval.
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Applications to other estimators



Other asymptotically normal estimators

The same approach works for any asymptotically normal estimator. Examples:
P Sample mean (CLT)

> Ordinary least squares (OLS) linear regression (an M-estimator under
Assumptions (A1)-(A3))

> Logistic regression (an MLE under Assumptions (B1)-(B2))
P Other M-estimators (see Lecture 9)
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Generalizing the approach

Suppose 0 is an estimator for @ with estimated standard error SE, such that for
large n the sampling distribuiton is approximately normal:

. ~2
O~ N <9,SE > .
To test the null hypothesis H, : 6 = 6,, use the t statistic:

-0,
=

f=

Now testing of the null hypothesis Hy, is identical to the preceding discussion.
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Example 1: OLS linear regression (standard output)
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OLS produces the following regression table output:

Im(formula = price ~ 1 + livingArea + bedrooms, data = sh)
Estimate Std. Error t value Pr(>Itl)

livingArea 125.405 3.527 35.555 < 2e-16 ***

The t value is the t statistic value; and Pr(>1t1) is the p-value.

But exactly which null hypothesis is being tested here?



Example 1: OLS linear regression (standard output)
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A regression table's output always reports t statistics and p-values for the null
hypothesis H, that the corresponding coefficient is zero.

In this case, the p-value on livingArea is extremely small, which means that the

observed t statistic is extremely unlikely if the true coefficient on 1ivingArea was
zero.

Important note: This calculation assumes Assumptions (A1)-(A3) hold!



Example 2: OLS linear regression (nonzero null)

In fact, we can use the same table to test other null hypotheses.

E.g. cantest Hy : Bjyingarea = 120. Form the t-statistic:

Pivingarea =120 125,405 — 120
- 3527

i= = 1.532.

SElivingArea

Corresponding p-value (from normal distribution) = 0.125 > 0.05, so we do not
reject the null if « = 0.05.

Alternatively, note that 120 is inside the 95% confidence interval [118.49, 132.32],
so we don't reject the null if « = 0.05 = same answer by duality.
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A note on OLS linear regression with normal errors [+«]

29/41

The previous discussion on OLS relied on the fact that OLS is an M-estimator
under Assumptions (A1)-(A3), so that the estimated coefficient is asymptotically
normal when n is large, with mean that is the true coefficient.

When, in addition, Assumption (A4) holds — i.e., the errors in the population
model are normally distributed - then for any sample size n, the t statistic has a
sampling distribution that is Student’s t distribution.

As previously noted, the test we have been doing in this case is called a t test;
see appendix).

Note that Student'’s t distribution is very close to the .#(0, 1) distribution even for
small n (e.g., n > 50), so for practical purposes the distinction usually doesn't
matter.



Example 3: Logistic regression
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Logistic regression on CORIS dataset:

glm(formula = chd ~ ., family = "binomial", data = coris)
Estimate Std. Error z value Pr(>1zl)

sbp 0.133308 ©.117452 1.135 0.256374

1dl 0.360181 ©0.123554 2.915 0.0@3555 **

The z value is the t statistic value; and Pr(>1z1) is the p-value — again for the
null hypothesis that the corresponding coefficient is zero.

Important note: Again, Assumptions (B1)-(B2) have to hold to have asymptotic
normality!



Statistical significance notation

Common notation:
P *** means p-value < 0.001 (“significant at 99.9% level”)
P ** means p-value < 0.01 (“significant at 99% level”)
P * means p-value < 0.05 (“significant at 95% level”)

Common language: “"The coefficient on 1ivingArea is statistically significant at
the 99.9% level.”
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Interpreting statistical significance

Important caveats:
1. Statistically significant # practically significant
P> Even tiny effects can be “statistically significant” with large n
2. Not statistically significant # unimportant
P Smallnorlarge SE can hide important effects
3. Require assumptions that ensure asymptotic normality of coefficients
P If (A1)-(A3) or (B1)-(B2) violated, tests may be misleading
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Appendix: z-tests and t-tests



Asymptotic normality and hypothesis testing [«]

So far, we've relied on asymptotic normality (large n approximation):

A~ ~72
» 0~ .40,SE)forlargen
P Test statistic 7 ~ (0, 1) under H,

What if we know the exact distribution for finite n?
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The z-test [x]

Setup:
P Data Yi,....Y, ~ N(u,62)i.0.d. (exactly normal)
P We know &2 (rare in practice!)
P Wantto test Hy : u = py

Test statistic (using true SE = a/\/;):

0/\/5‘

Under Hy: z ~ #(0, 1) exactly for any n (not just asymptotically).

z

This is called a z-test. Rarely applicable because we almost never know o.
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The t-test [«]

Setup:
P Data Yi,....,Y, ~ N (u, ) i.i.d. (exactly normal)
P We don't know 62 (the usual case)
P Want to test Hy : u = py

Test statistic (using estimated SE = &/\/Z):

s/\/n

Under Hy: t ~ Student’s t-distribution with (n — 1) degrees of freedom.

t
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Student’s t-distribution [x]

The t-distribution:
P> Is symmetric around 0 (like (0, 1))
P> Has heavier tails than (0, 1) (accounts for uncertainty in )
P Convergesto #(0,1)asn — o
P s very close to .#(0, 1) even for n > 30

For large n, t-tests and asymptotic tests give nearly identical results.
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Appendix: Power computation [x]



Computing power [:]

To compute power, we need a specific alternative 0 = 6, # 6.

. 6-0, 9—90
SE

Ifo =0, then:

Power at 6,:

0, -0,
Power(0,) = P (|Z| > z4,) where Z ~ & 1.
SE

37/41



Power increases with effect size [+]

Power depends on:
1. Effectsize: |0, — 6y| (how far is truth from null?)

2. Standard error: SE (how much uncertainty?)
3. Significance level: a

Larger |6, — 00|/§I\E — Higher power.
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Appendix: One-sided vs two-sided tests [:]



Two-sided tests (what we’'ve done so far) [*]

Two-sided test:

D H,:0=0,vsH, :0+86,

P p-value = P(|Z| > |7]) where Z is #(0, 1)

P> Tests whether @ differs from 6, in either direction
This is the most common type of test in practice.
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One-sided tests [ ]

One-sided test (upper tail):

D H,:0<0,vsH, :0>0,

P p-value = P(Z > 1) where Z is #(0,1)
One-sided test (lower tail):

D H,:0>6,vsH, :0<86,

P p-value = P(Z < 1) where Z is #(0,1)

Again, reject Hy if the p-value is smaller than a.
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Two-sided vs. one-sided tests [:]

A one-sided test only tests deviations in one direction.

They are less commonly used, since if Hy : 6 = 6, is not true, we typically don't
have any reason to know in advance whether in fact > 6, or 6 < 6,,.
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Two-sided vs. one-sided tests [:]
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Note that P(|Z| > |f]) = P(Z > |f]) + P(Z < —|f)).

Therefore, at a fixed significance level a, it is easier to reject the null using a
one-sided test.

This practice is sometimes viewed as “inflating” significant results, which is one
of the reasons that two-sided testing is standard practice.
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