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Introduction to hypothesis testing



The two goals of parametric inference

Recall the following two goals
▶ Estimation. What is our best guess for the true parameters of the population

model (e.g., the population mean)?
▶ Quantifying uncertainty. How uncertain are we in our guess?
So far we’ve talked about quantifiying uncertainty via standard errors and
confidence intervals.
Today we’ll talk about a different way to quantify uncertainty: hypothesis testing.
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Motivating example: Flight delays

Suppose we draw a sample of 𝑛 = 500 flights and obtain:
▶ Sample mean delay: 𝑌 = 11.68 minutes
▶ Sample standard deviation: 𝜎̂ = 74.45 minutes
▶ Estimated SE: ŜE = 𝜎̂/√𝑛 = 3.33 minutes

Question: Is our evidence consistent with the hypothesis that the true
population mean 𝜇 is zero? I.e., is the average flight is exactly on time?
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The hypothesis testing “recipe”

We want to test whether a specific claim about a parameter is plausible, given
our data.
The hypothesis testing “recipe”:
▶ Suppose the claim were true. This is the null hypothesis, denoted 𝐻0.

▶ Across many “parallel universes” (the sampling distribution), how likely
would we be to observe data as extreme as what we actually saw?

▶ If very unlikely, we reject the null hypothesis.

Virtually all hypothesis tests work this way!
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Example: Testing if mean delay is zero

Null hypothesis 𝐻0: 𝜇 = 0 (true population mean is zero)
Alternative hypothesis 𝐻1: 𝜇 ≠ 0 (true population mean is not zero)
From the CLT, we know that for large 𝑛, the sampling distribution is
approximately normal:

𝑌 ≈ 𝒩 (𝜇, ŜE2
).

Question: If 𝐻0 were true (𝜇 = 0), how likely are we to see |𝑌 | ≥ 11.68?
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The t statistic



Standardizing the sample mean

To test 𝐻0 ∶ 𝜇 = 𝜇0, we construct the following test statistic,
also called a t statistic:

̂𝑡 = 𝑌 − 𝜇0

ŜE
.

From the CLT, we know that 𝑌 has a sampling distribution that is approximately
𝒩 (𝜇, ŜE2

) for large 𝑛.
Therefore: If 𝐻0 is true (𝜇 = 𝜇0), then for large 𝑛,
the sampling distribution of ̂𝑡 is approximately 𝒩 (0, 1).
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The t statistic

We write ̂𝑡 for our observed value of our t statistic.
We can use ̂𝑡 to “test” whether we believe the null hypothesis𝐻0 ∶ 𝜇 = 𝜇0 is true:
▶ If 𝐻0 is true, then ̂𝑡 should be “typical” for a 𝒩 (0, 1) random variable.
▶ If 𝐻0 is false, then ̂𝑡 will tend to be “large” in absolute value.
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Example: Flight delays

For our flight delays example:
▶ 𝐻0 ∶ 𝜇 = 0
▶ 𝑌 = 11.68
▶ ŜE = 3.33

Test statistic:
̂𝑡 = 𝑌 − 0

ŜE
= 11.68 − 0

3.33 = 3.51.

Question: Is this plausible if 𝐻0 ∶ 𝜇 = 0 is true, i.e., if the sampling distribution of
̂𝑡 is 𝒩 (0, 1)?
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p-values



The p-value

The p-value is the probability of observing a test statistic as extreme as what we
observed, if the null hypothesis were true.

p-value = ℙ(|𝑍| ≥ | ̂𝑡|),
where 𝑍 ∼ 𝒩 (0, 1).
The p-value answers the question: “If 𝐻0 is true, is your observation ̂𝑡 plausible?”
For our example: p-value = ℙ(|𝑍| ≥ 3.51) ≈ 0.0004.
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Interpreting the p-value

p-value ≈ 0.0004:
▶ Interpretation: If the true mean delay were zero, there’s only a 0.04% chance

we would observe a sample mean as extreme as 11.68 minutes.
▶ This is very unlikely, i.e., our evidence is inconsistent with the truth of 𝐻0.
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How NOT to interpret the p-value

Important: The p-value IS NOT the probability that 𝐻0 is true!
We cannotmake statements about the “chance” of 𝐻0 being true, because the
true 𝜇 is not random.
The p-value:
▶ IS: Probability of observing a test statistic as extreme as ̂𝑡, given 𝐻0 is true.
▶ IS NOT: Probability 𝐻0 is true, given that you observed ̂𝑡.

The first is a frequentist statement; the second is a Bayesian statement, which we
will see later in the course.
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Rejecting the null:
Hypothesis testing as binary classification



Can we reject the null?

In hypothesis testing, we determine whether the evidence allows us to reject the
null 𝐻0.
Formally we choose a significance level 𝛼 (e.g., 𝛼 = 0.05).
Decision rule: Reject 𝐻0 at significance level 𝛼 if p-value ≤ 𝛼.
A smaller 𝛼 means we need stronger evidence (more extreme ̂𝑡 ) to reject the
null.
For our example, p-value = 0.0004 < 0.05 ⟹
we reject 𝐻0 ∶ 𝜇 = 0 at significance level 𝛼 = 0.05.
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A note on terminology [∗]

The statistic we are using is called a t statistic; it is also sometimes called a
studentized statistic. (“Studentizing” refers to normalizing by the estimated
standard error ŜE.)
The hypothesis test defined by the decision rule on the preceding slide is often
referred to as a “t-test”, though the formal definition of a t-test requires assuming
the data generating process is exactly normal (not asymptotically normal). (See
appendix for more on t-tests.)
Another name for the rule on the previous slide is theWald test.
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Hypothesis testing as classification

This decision rule makes hypothesis testing into binary classification!
The “truth” (unknown):
▶ 𝐻0 is true
▶ 𝐻0 is false
Our decision (based on data):
▶ Reject 𝐻0
▶ Don’t reject 𝐻0
Just like a classifier, we can make mistakes...
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Two types of errors

In hypothesis testing, we can make two types of mistakes:

Reject 𝐻0 Don’t Reject 𝐻0
𝐻0 True False Positive True Negative
𝐻0 False True Positive False Negative

▶ Type I error (False Positive): Reject 𝐻0 when it’s actually true
▶ Type II error (False Negative): Fail to reject 𝐻0 when it’s actually false
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The meaning of “significance”

Recall we called 𝛼 the “significance level”.
Key result: The significance level 𝛼 is exactly the false positive (Type I error)
probability!

𝛼 = ℙ(reject 𝐻0|𝐻0 true).
In other words, 𝛼 is a “tuning knob” that controls how often we make false
positive errors.
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Why is 𝛼 = false positive probability?

If we reject 𝐻0 when the p-value ≤ 𝛼 ...

then we reject 𝐻0 if the chance of seeing a test statistic as extreme as our
observation is ≤ 𝛼...
which has chance exactly 𝛼 if 𝐻0 is true!
So if we reject when p-value ≤ 0.05, we reject with probability 0.05 when 𝐻0 is
true ⟹ 5% false positive probability.

17/41



Why is 𝛼 = false positive probability?

If we reject 𝐻0 when the p-value ≤ 𝛼 ...
then we reject 𝐻0 if the chance of seeing a test statistic as extreme as our
observation is ≤ 𝛼...

which has chance exactly 𝛼 if 𝐻0 is true!
So if we reject when p-value ≤ 0.05, we reject with probability 0.05 when 𝐻0 is
true ⟹ 5% false positive probability.

17/41



Why is 𝛼 = false positive probability?

If we reject 𝐻0 when the p-value ≤ 𝛼 ...
then we reject 𝐻0 if the chance of seeing a test statistic as extreme as our
observation is ≤ 𝛼...
which has chance exactly 𝛼 if 𝐻0 is true!
So if we reject when p-value ≤ 0.05, we reject with probability 0.05 when 𝐻0 is
true ⟹ 5% false positive probability.

17/41



Power

Power is the probability of correctly rejecting 𝐻0 when it’s false – informally:

Power = ℙ(reject 𝐻0|𝐻0 false) = 1 − ℙ(Type II error).

Problem: 𝐻0 can be false in many ways! Power depends on what the true 𝜇
actually is.
To formally compute power, we need a specific alternative 𝜇 = 𝜇𝑎 ≠ 𝜇0; see
appendix.
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Tradeoff between Type I and Type II errors

Reducing 𝛼 (being more conservative):
▶ Decreases false positive probability
▶ Increases false negative probability, i.e., decreases power
Increasing 𝛼 (being less conservative):
▶ Increases false positive probability
▶ Decreases false negative probability, i.e., increases power
This is the fundamental tradeoff in hypothesis testing!
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Increasing power: The sample size

When the truth is 𝜇𝑎 ≠ 𝜇0, then for large 𝑛 the t statistic for testing 𝐻0 ∶ 𝜇 = 𝜇0
has sampling distribution that is approximately:

𝒩
(

𝜇𝑎 − 𝜇0

𝜎̂/√𝑛
, 1

)
.

With 𝜇𝑎 ≠ 𝜇0, as 𝑛 → ∞, the magnitude of this statistic → ∞.
So at any 𝛼, we become increasingly likely to (correctly) reject the null!
In other words: power increases as the sample size grows.
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Connection to confidence intervals



Equivalent decision rule

The t statistic has approximately a 𝒩 (0, 1) distribution under 𝐻0.
Therefore the decision rule “reject if the p-value is ≤ 𝛼” is equivalent to rejecting
𝐻0 when:

| ̂𝑡| > 𝑧𝛼/2,
where 𝑧𝛼/2 is the 1 − 𝛼/2 quantile of the 𝒩 (0, 1) distribution.
For 𝛼 = 0.05: 𝑧0.025 ≈ 1.96.
For our example: |3.51| > 1.96 ⟹ Reject 𝐻0 at significance level 𝛼 = 0.05.
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Duality between tests and confidence intervals

There is an important connection between hypothesis tests and confidence
intervals:
Note that we reject the null with 𝛼 = 0.05 exactly when | ̂𝑡| > 1.96.

Since ̂𝑡 = (𝑌 − 𝜇0)/ŜE, this is equivalent to rejecting the null exactly when:

𝜇0 ∉ [𝑌 − 1.96ŜE, 𝑌 + 1.96ŜE]

I.e., we reject 𝐻0 ∶ 𝜇 = 𝜇0 if 𝜇0 is not in the 95% confidence interval.
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General 𝛼 [∗]

Recall the (1 − 𝛼) CI is: [𝑌 − 𝑧𝛼/2ŜE, 𝑌 + 𝑧𝛼/2ŜE].
We reject 𝐻0 ∶ 𝜇 = 𝜇0 when | ̂𝑡| > 𝑧𝛼/2, which means:

|
𝑌 − 𝜇0

ŜE |
> 𝑧𝛼/2.

This is equivalent to: |𝑌 − 𝜇0| > 𝑧𝛼/2ŜE.
As a result, a significance level 𝛼 test rejects 𝐻0 ∶ 𝜇 = 𝜇0 if and only if 𝜇0 is not in
the (1 − 𝛼) confidence interval.
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Applications to other estimators



Other asymptotically normal estimators

The same approach works for any asymptotically normal estimator. Examples:
▶ Sample mean (CLT)
▶ Ordinary least squares (OLS) linear regression (an M-estimator under

Assumptions (A1)-(A3))
▶ Logistic regression (an MLE under Assumptions (B1)-(B2))
▶ Other M-estimators (see Lecture 9)
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Generalizing the approach

Suppose ̂𝜃 is an estimator for 𝜃 with estimated standard error ŜE, such that for
large 𝑛 the sampling distribuiton is approximately normal:

̂𝜃 ≈ 𝒩 (𝜃, ŜE2
) .

To test the null hypothesis 𝐻0 ∶ 𝜃 = 𝜃0, use the t statistic:

̂𝑡 =
̂𝜃 − 𝜃0

ŜE
.

Now testing of the null hypothesis 𝐻0 is identical to the preceding discussion.
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Example 1: OLS linear regression (standard output)

OLS produces the following regression table output:
lm(formula = price ~ 1 + livingArea + bedrooms, data = sh)
...

Estimate Std. Error t value Pr(>|t|)
...
livingArea 125.405 3.527 35.555 < 2e-16 ***
...

The t value is the t statistic value; and Pr(>|t|) is the p-value.
But exactly which null hypothesis is being tested here?
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Example 1: OLS linear regression (standard output)

A regression table’s output always reports t statistics and p-values for the null
hypothesis 𝐻0 that the corresponding coefficient is zero.
In this case, the p-value on livingArea is extremely small, which means that the
observed t statistic is extremely unlikely if the true coefficient on livingArea was
zero.
Important note: This calculation assumes Assumptions (A1)-(A3) hold!

27/41



Example 2: OLS linear regression (nonzero null)

In fact, we can use the same table to test other null hypotheses.
E.g., can test 𝐻0 ∶ 𝛽livingArea = 120. Form the t-statistic:

̂𝑡 =
̂𝛽livingArea − 120

ŜElivingArea
= 125.405 − 120

3.527 = 1.532.

Corresponding p-value (from normal distribution) = 0.125 > 0.05, so we do not
reject the null if 𝛼 = 0.05.
Alternatively, note that 120 is inside the 95% confidence interval [118.49, 132.32],
so we don’t reject the null if 𝛼 = 0.05 ⟹ same answer by duality.
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A note on OLS linear regression with normal errors [∗]

The previous discussion on OLS relied on the fact that OLS is an M-estimator
under Assumptions (A1)-(A3), so that the estimated coefficient is asymptotically
normal when 𝑛 is large, with mean that is the true coefficient.
When, in addition, Assumption (A4) holds — i.e., the errors in the population
model are normally distributed – then for any sample size 𝑛, the t statistic has a
sampling distribution that is Student’s t distribution.
As previously noted, the test we have been doing in this case is called a t test;
see appendix).
Note that Student’s t distribution is very close to the 𝒩 (0, 1) distribution even for
small 𝑛 (e.g., 𝑛 > 50), so for practical purposes the distinction usually doesn’t
matter.
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Example 3: Logistic regression
Logistic regression on CORIS dataset:
glm(formula = chd ~ ., family = "binomial", data = coris)
...

Estimate Std. Error z value Pr(>|z|)
...
sbp 0.133308 0.117452 1.135 0.256374
...
ldl 0.360181 0.123554 2.915 0.003555 **
...

The z value is the t statistic value; and Pr(>|z|) is the p-value — again for the
null hypothesis that the corresponding coefficient is zero.
Important note: Again, Assumptions (B1)-(B2) have to hold to have asymptotic
normality!
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Statistical significance notation

Common notation:
▶ ***means p-value < 0.001 (“significant at 99.9% level”)
▶ **means p-value < 0.01 (“significant at 99% level”)
▶ *means p-value < 0.05 (“significant at 95% level”)
Common language: “The coefficient on livingArea is statistically significant at
the 99.9% level.”
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Interpreting statistical significance

Important caveats:
1. Statistically significant ≠ practically significant

▶ Even tiny effects can be “statistically significant” with large 𝑛
2. Not statistically significant ≠ unimportant

▶ Small 𝑛 or large ŜE can hide important effects
3. Require assumptions that ensure asymptotic normality of coefficients

▶ If (A1)-(A3) or (B1)-(B2) violated, tests may be misleading
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Appendix: z-tests and t-tests



Asymptotic normality and hypothesis testing [∗]

So far, we’ve relied on asymptotic normality (large 𝑛 approximation):
▶ ̂𝜃 ≈ 𝒩 (𝜃, ŜE2

) for large 𝑛
▶ Test statistic ̂𝑡 ≈ 𝒩 (0, 1) under 𝐻0

What if we know the exact distribution for finite 𝑛?
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The z-test [∗]

Setup:
▶ Data 𝑌1, … , 𝑌𝑛 ∼ 𝒩 (𝜇, 𝜎2) i.i.d. (exactly normal)
▶ We know 𝜎2 (rare in practice!)
▶ Want to test 𝐻0 ∶ 𝜇 = 𝜇0
Test statistic (using true SE = 𝜎/√𝑛):

𝑧 =
̄𝑌 − 𝜇0

𝜎/√𝑛
.

Under 𝐻0: 𝑧 ∼ 𝒩 (0, 1) exactly for any 𝑛 (not just asymptotically).
This is called a z-test. Rarely applicable because we almost never know 𝜎.
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The t-test [∗]

Setup:
▶ Data 𝑌1, … , 𝑌𝑛 ∼ 𝒩 (𝜇, 𝜎2) i.i.d. (exactly normal)
▶ We don’t know 𝜎2 (the usual case)
▶ Want to test 𝐻0 ∶ 𝜇 = 𝜇0

Test statistic (using estimated ŜE = 𝜎̂/√𝑛):

𝑡 =
̄𝑌 − 𝜇0

𝜎̂/√𝑛
.

Under 𝐻0: 𝑡 ∼ Student’s t-distribution with (𝑛 − 1) degrees of freedom.
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Student’s t-distribution [∗]

The t-distribution:
▶ Is symmetric around 0 (like 𝒩 (0, 1))
▶ Has heavier tails than 𝒩 (0, 1) (accounts for uncertainty in 𝜎̂)
▶ Converges to 𝒩 (0, 1) as 𝑛 → ∞
▶ Is very close to 𝒩 (0, 1) even for 𝑛 ≥ 30
For large 𝑛, t-tests and asymptotic tests give nearly identical results.
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Appendix: Power computation [∗]



Computing power [∗]

To compute power, we need a specific alternative 𝜃 = 𝜃𝑎 ≠ 𝜃0.
If 𝜃 = 𝜃𝑎, then:

̂𝑡 =
̂𝜃 − 𝜃0

ŜE
≈ 𝒩 (

𝜃𝑎 − 𝜃0

ŜE
, 1) .

Power at 𝜃𝑎:

Power(𝜃𝑎) = ℙ (|𝑍| > 𝑧𝛼/2) where 𝑍 ∼ 𝒩 (
𝜃𝑎 − 𝜃0

ŜE
, 1) .
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Power increases with effect size [∗]

Power depends on:
1. Effect size: |𝜃𝑎 − 𝜃0| (how far is truth from null?)
2. Standard error: ŜE (how much uncertainty?)
3. Significance level: 𝛼
Larger |𝜃𝑎 − 𝜃0|/ŜE → Higher power.

38/41



Appendix: One-sided vs two-sided tests [∗]



Two-sided tests (what we’ve done so far) [∗]

Two-sided test:
▶ 𝐻0 ∶ 𝜃 = 𝜃0 vs 𝐻1 ∶ 𝜃 ≠ 𝜃0
▶ p-value = ℙ(|𝑍| ≥ | ̂𝑡|) where 𝑍 is 𝒩 (0, 1)
▶ Tests whether 𝜃 differs from 𝜃0 in either direction
This is the most common type of test in practice.
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One-sided tests [∗]

One-sided test (upper tail):
▶ 𝐻0 ∶ 𝜃 ≤ 𝜃0 vs 𝐻1 ∶ 𝜃 > 𝜃0
▶ p-value = ℙ(𝑍 ≥ ̂𝑡) where 𝑍 is 𝒩 (0, 1)
One-sided test (lower tail):
▶ 𝐻0 ∶ 𝜃 ≥ 𝜃0 vs 𝐻1 ∶ 𝜃 < 𝜃0
▶ p-value = ℙ(𝑍 ≤ ̂𝑡) where 𝑍 is 𝒩 (0, 1)
Again, reject 𝐻0 if the p-value is smaller than 𝛼.
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Two-sided vs. one-sided tests [∗]

A one-sided test only tests deviations in one direction.
They are less commonly used, since if 𝐻0 ∶ 𝜃 = 𝜃0 is not true, we typically don’t
have any reason to know in advance whether in fact 𝜃 > 𝜃0 or 𝜃 < 𝜃0.
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Two-sided vs. one-sided tests [∗]

Note that 𝑃 (|𝑍| ≥ | ̂𝑡|) = ℙ(𝑍 ≥ | ̂𝑡|) + ℙ(𝑍 ≤ −| ̂𝑡|).
Therefore, at a fixed significance level 𝛼, it is easier to reject the null using a
one-sided test.
This practice is sometimes viewed as “inflating” significant results, which is one
of the reasons that two-sided testing is standard practice.
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