MS&E 226: Fundamentals of Data Science
Lecture 12: Beyond single hypothesis tests
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Multiple hypothesis testing



An example: Multiple linear regression

Suppose that | have n rows of data with outcomes Y and corresponding
covariates X. Suppose p = 100.

| run a linear regression with all the covariates and check statistical significance. |
order the resulting covariates in descending order of p-value:

Covariate index | p-value
40 0.0070
58 0.018
93 0.034
69 0.040
57 0.042
10 0.047

You walk away excited: these six coefficients are all significant at the 95% level,
and you now have a starting point for building your model.
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An example: Multiple linear regression
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In fact: There is no relationship in this data between X and Y!

| used synthetic data to generate this example, with:
P Y, ~ #(0,1) for each i, i.i.d.
> X;; ~H(0,1) for each i, j, i.i.d.

So what happened?



What happened?

Recall the p-value is the answer to the following question:

What is the chance | would see an estimated coefficient (from the data)
as extreme as what | found, if the true coefficient was actually zero?
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What happened?
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Recall the p-value is the answer to the following question:
What is the chance | would see an estimated coefficient (from the data)
as extreme as what | found, if the true coefficient was actually zero?

If we use a cutoff of 0.05 to determine whether a coefficient is “statistically
significant”, then we are willing to accept a 5% rate of false positives: coefficients
that look large due to random chance, despite the fact that there is really no
underlying relationship.

This means with 100 covariates, we should expect 5 of the coefficients to be
significant due to random chance alone — even if there is no effect there! (In our
case we get slightly more than this.)



Multiple hypothesis testing
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This is a systematic issue with statistical significance based on p-values from
individual hypothesis tests:

If you use a cutoff of 0.05 (or 0.01, etc.), you should expect 5% (or 1%, etc.) of
your discoveries (rejections) to be false positives.

This applies across all hypothesis tests you do: so for example, if you use a 5%
cutoff every day at your job on every test you ever run, you will generate false
positives in 5% of your hypothesis tests.



Example: The Optimizely results page

6/25

Platforms such as Optimizely enable “A/B testing” (i.e., randomized
experimentation) of different website’s designs against each other. Here is a
typical results page for an experiment:
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Real dashboards can have many more simultaneous hypothesis tests present.



Multiple hypothesis testing

Is this a problem? Perhaps not: if you understand that false positives are
generated in this way, you can be wary of overinterpreting significance with
many hypothesis tests.

The problem is that interpretation of the results becomes much harder: which
results are “trustworthy”, and which are “spurious”?
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Multiple testing corrections

Multiple testing corrections provide a systematic approach to identifying
“meaningful” effects when dealing with many simultaneous hypothesis tests.

This has been an active area of work in the last several decades in statistics, as
the range of applications where many hypothesis tests are possible has
increased.
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Notation
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We will discuss multiple testing corrections in the context of the OLS regression
example.

As before, we will assume that Assumptions (A1)-(A3) hold. Let Héj) 2 p;=0
denote the null hypothesis that coefficient j is zero.

If nis “large”, then the p-value on feature j in the regression table is the chance
of seeing a corresponding t statistic as extreme as observed, if Hé’) is true.



Bonferroni correction

The simplest example of a multiple testing correction is the Bonferroni
correction.

This approach tries to ensure that the probability of declaring even one false

positive across all the hypothesis tests (also called the familywise error rate,
FWER) is no more than, e.g., 5%.
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Bonferroni correction

10/25

The simplest example of a multiple testing correction is the Bonferroni
correction.

This approach tries to ensure that the probability of declaring even one false
positive across all the hypothesis tests (also called the familywise error rate,
FWER) is no more than, e.g., 5%.

The Bonferroni correction declares as significant (rejects the null) any coefficient
Jj where the p-value is < a/p, where p is the number of hypothesis tests being
carried out.

In our example, p = 100 and a = 0.05, so only coefficients with p-values < 0.0005
are declared significant — none in the example | showed!



Bonferroni correction

Why does the Bonferroni correction work?
P> For a collection of events 4, ... , A,, we have the following bound (called
the union bound):

p
P(A; or Ay or - A,) < Z P(A)).
j=1
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P Sonow let A; be the event that the p-value for coefficient j is less than or
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Bonferroni correction

Why does the Bonferroni correction work?

P> For a collection of events 4, ... , A,, we have the following bound (called
the union bound):

p
P(A; or Ay or - A,) < Z P(A)).
j=1

P Sonow let A; be the event that the p-value for coefficient j is less than or
equal to a/p. Then if Héj) is true, we have:
a
P(Ajlﬂj =0)<-.
P
P Finally, suppose that all Héj) are true, i.e., the p;'s arein fact all zero. Then
the probability at least one of the A,'s is true (i.e., at least one false positive)
is<pXalp=a.
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Bonferroni correctionin R

In R, the Bonferroni correction is easy to implement using the p.adjust function:

# Suppose you have a vector of p-values
pvalues <- c(0.001, 0.045, 0.0004, 0.025, 0.15)

# Apply Bonferroni correction
adjusted_pvalues <- p.adjust(pvalues, method = "bonferroni")

# Reject at level alpha = 0.05
alpha <- 0.05
reject <- adjusted_pvalues <= alpha

The function multiplies each unadjusted p-value by p (the number of tests),
capping at 1.
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Benjamini-Hochberg procedure

The Bonferroni correction works by essentially forcing your attention only on the
smallest p-values (most significant results).

In practice, though, it can be too conservative, especially as the number of
hypotheses (e.g., coefficients) increases.

Other methods have emerged to deal with this issue, to allow valid inference
while being somewhat less conservative. We consider one, the
Benjamini-Hochberg (BH) procedure.
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Benjamini-Hochberg procedure: False discovery proportion

Suppose that S is the set of coefficients where the null is in fact true:
—q; - gWw: — (i —
So=1{j: Hy istrue} ={j: p; =0}.

Suppose that under a given decision procedure, you reject the null for the set of
hypotheses in R.

The false discovery proportion (FDP) is the fraction of your rejections that were
also in the null set:”

'FDP is defined to be zero if you make no rejections.
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Benjamini-Hochberg procedure: False discovery rate
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The false discovery rate (FDR) is the expected value of this fraction over the
randomness of the data (“parallel universes”), given the true coefficients:

FDR = E@[FDPlﬂl, ,ﬁp]7

where g, = 0 for j € Sj,. (Here 9 represents your data sample used for
hypothesis testing.)

The BH procedure ensures FDR is less than or equal to « - regardless of which
coefficients are null or not!



Intuition for false discovery rate
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Consider the Optimizely results page again.

Suppose we use BH with @ = 0.05. This ensures that on average, of those cells
that are declared significant, we will have made mistakes on at most 5% of them.

The criterion is stronger than just controlling each individual test at & = 0.05, but
weaker than controlling the familywise error rate at « = 0.05.



Benjamini-Hochberg procedure

The BH procedure at level a is simple to implement:

1. Compute p-values for each of your hypothesis tests, and order them in
increasing order. Denote these by gy, 4, --- » 4(p)-

2. Find the largest j such that: q(;) < aj/p.

3. Reject all hypotheses 1,..., j.
As long as all hypothesis tests are independent of each other, this procedure
ensures FDR < a.

Note: The Bonferroni correction would reject only those where ¢, < a/p (a
constant threshold).

2If the hypotheses are not independent, the same result holds if we change the right hand side
to aj/(plog p).
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Benjamini-Hochberg: Numerical example
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As a numerical example, suppose that we run BH at level « = 0.05 with 5
hypothesis tests, where we assume the tests are independent, and we receive
p-values 0.001,0.045,0.027,0.022,0.10.

We first order the p-values from lowest to highest: 0.001,0.022,0.027,0.045, 0.10.

Since a/5 = 0.01, we look for the largest j such that the j'th p-value in the
ordered listis < 0.01,. This is 0.027, so we reject the three hypotheses with
p-values 0.001,0.022, and 0.027.



Benjamini-Hochberg: Visual demonstration
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Index j (ordered p-values)
The blue line shows ordered p-values. The red line is the BH threshold «j/p. We reject
hypotheses 1, 2, and 3 (blue dots below the BH threshold). (The orange dashed line is

the Bonferroni threshold a/p.)



Benjamini-Hochberg in R

In R, the BH procedure is also easy to implement using p.adjust:

# Suppose you have a vector of p-values
pvalues <- c(0.001, 0.045, 0.027, 0.022, 0.10)

# Apply Benjamini-Hochberg correction
adjusted_pvalues <- p.adjust(pvalues, method = "BH")

# Reject at level alpha = 0.05
alpha <- 0.05

reject <- adjusted_pvalues <= alpha
# Which hypotheses are rejected?
which(reject) # Returns: 1 3 4
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Why use Benjamini-Hochberg?
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The BH procedure is much less conservative than the Bonferroni correction,
while still providing useful inference when many hypothesis tests are run.

You should have the habit of always using a procedure like BH when you run
many hypothesis tests (e.g., testing many coefficients at once, or testing many

exploratory hypotheses with the same data), to validate that your findings are
actually meaningful.



Post-selection inference



Hypothesis testing in practice
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Multiple testing corrections address one problem: choosing significant results
among many simultaneous tests.

But this is not the only problem that can arise...In practice, testing many
coefficients is often only the first step in a common data science pipeline:
P Model selection: Determine which features are “significant”, i.e., which
features to keep.
P Inference: Report standard errors, p-values, and confidence intervals for the
resulting model.

Unfortunately, this practice is problematic if the same data is used for selection
and inference!



Post-selection inference: The problem

Example: Suppose you:

1.
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Fit a regression with 10 variables

2. Keep only the variables with p-value < 0.10
3.
4

. Report p-values and confidence intervals from the final model

Refit the model with just those variables



Post-selection inference: The problem

Example: Suppose you:
1. Fit a regression with 10 variables
2. Keep only the variables with p-value < 0.10
3. Refit the model with just those variables
4. Report p-values and confidence intervals from the final model

What goes wrong? By selecting variables based on significance, you've
cherry-picked a favorable sample. The p-values in step 4 are biased downward
(i.e., too likely to lead you to reject the null) because they don't account for the
selection in step 2.
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Post-selection inference: The problem

Example: Suppose you:
1. Fit a regression with 10 variables
2. Keep only the variables with p-value < 0.10
3. Refit the model with just those variables
4. Report p-values and confidence intervals from the final model

What goes wrong? By selecting variables based on significance, you've
cherry-picked a favorable sample. The p-values in step 4 are biased downward
(i.e., too likely to lead you to reject the null) because they don't account for the
selection in step 2.

This practice is also sometimes called “p-value hacking”.
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Sample splitting: A practical solution

The simplest solution to post-selection bias is sample splitting:

1. Split your data into two independent sets:

> Exploration set (e.g., 50% of data): Use for model selection
P Confirmation set (e.g., 50% of data): Use for inference

2. Selection step: Use the exploration set to choose your model (e.g., which
variables to include, which transformations to use).

3. Inference step: Fit the selected model on the confirmation set only, and
report p-values and confidence intervals from this fit.
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Sample splitting: A practical solution

The simplest solution to post-selection bias is sample splitting:

1. Split your data into two independent sets:

> Exploration set (e.g., 50% of data): Use for model selection
P Confirmation set (e.g., 50% of data): Use for inference

2. Selection step: Use the exploration set to choose your model (e.g., which
variables to include, which transformations to use).

3. Inference step: Fit the selected model on the confirmation set only, and
report p-values and confidence intervals from this fit.

The confirmation set is independent of the selection process, so p-values and
confidence intervals remain valid as long as the selected model satisfies the
assumptions needed for valid inference; e.g., (A1)-(A3) for OLS.
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Sample splitting: Connection to cross-validation

Sample splitting should feel familiar from our discussion of prediction:

P> In prediction, we split data into training/test sets to evaluate model
performance on unseen data.

P> Ininference, we split data into exploration/confirmation sets to ensure valid
p-values and confidence intervals.

The underlying principle is the same: data used for selection should be
independent from data used for evaluation or inference.

On the problem set, you will see post-selection inference in action, and use
sample splitting to correct it.
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