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Causation vs. association



Two examples

Suppose you are considering whether a new diet is linked to lower risk of
inflammatory arthritis.
You observe that in a given sample:
▶ A small fraction of individuals on the diet have inflammatory arthritis.
▶ A large fraction of individuals not on the diet have inflammatory arthritis.
You recommend that everyone pursue this new diet, but rates of inflammatory
arthritis are unaffected.
What happened?
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Two examples

Suppose you are considering whether a new e-mail promotion you just ran is
useful to your business.
You see that those who received the e-mail promotion did not convert at
substantially higher rates than those who did not receive the e-mail.
So you give up...and later, another product manager runs an experiment with a
similar idea, and conclusively demonstrates the promotion raises conversion
rates.
What happened?
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Association vs. causation

In each case, you were unable to see what would have happened to each
individual if the alternative action had been applied.

▶ In the arthritis example, suppose only individuals predisposed to being
healthy do the diet in the first place. Then you cannot see either what
happens to an unhealthy person who does the diet, or a healthy person
who does not do the diet.

▶ In the e-mail example, suppose only individuals who are unlikely to convert
received your e-mail. Then you cannot see either what happens to an
individual who is likely to convert who receives the promotion, or an
individual who is not likely to convert who does not receive the promotion.

The lack of this information is what prevents inference about causation from
association.
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The “potential outcomes” model



Counterfactuals and potential outcomes

In our examples, the unseen information about each individual is the
counterfactual.
Without reasoning about the counterfactual, we can’t draw causal inferences—or
worse, we draw the wrong causal inferences!
The potential outcomesmodel is a way to formally think about counterfactuals
and causal inference.
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Potential outcomes

Suppose there are two possible actions that can be applied to an individual:
▶ 1 (“treatment”)
▶ 0 (“control”)
(What are these in our examples?)

For each individual in the population, there are two associated potential
outcomes:
▶ 𝑌 (1) : outcome if treatment applied
▶ 𝑌 (0) : outcome if control applied
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Causal effects

The causal effect of the action for an individual is the difference between the
outcome if they are assigned treatment or control:

causal effect = 𝑌 (1) − 𝑌 (0).

The fundamental problem of causal inference is this:
In any example, for each individual, we only get to observe one of the
two potential outcomes!

In other words, this approach treats causal inference as a problem ofmissing
data.
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Assignment

The assignment mechanism is what decides which outcome we get to observe.
We let 𝑊 = 1 (resp., 0) if an individual is assigned to treatment (resp., control).
▶ In the arthritis example, individuals self-assigned.
▶ In the e-mail example, we assigned them, but not completely at random.
▶ Randomized assignment chooses assignment to treatment or control at

random.

Note that we typically write 𝑌 for the observed outcome, i.e., 𝑌 = 𝑌 (𝑊 ).
(This is confusing notation because 𝑌 (1), 𝑌 (0) are potential outcomes, and 𝑌 is
also used for the observed outcome...but this is standard notation in causal
inference.)
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Example 1: Potential outcomes
Here is a table depicting an extreme version of the arthritis example in the
potential outcomes framework.
▶ 𝑊 = 1 means the diet was followed
▶ 𝑌 = 1 or 0 based on whether arthritis was observed
▶ The starred entries are what we observe

Individual 𝑊𝑖 𝑌𝑖(0) 𝑌𝑖(1) Causal effect
1 1 ? 0 (∗) ?
2 1 ? 0 (∗) ?
3 1 ? 0 (∗) ?
4 1 ? 0 (∗) ?
5 0 1 (∗) ? ?
6 0 1 (∗) ? ?
7 0 1 (∗) ? ?
8 0 1 (∗) ? ?
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Causal inference as a missing data problem
The previous table makes it clear that themissing data prevents our ability to
determine causal effects.
It is important that we wrote the table as on the previous slide! Usually, when we
collect the data, it will just have one column for the observed outcome, instead
of potential outcomes:

Individual 𝑊𝑖 𝑌
1 1 0
2 1 0
3 1 0
...

In this form, it masks the fact that causal inference depends on data that is in fact
missing.
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Example 1: Potential outcomes
Here is the table with themissing data filled in – we can’t observe this!
▶ 𝑊 = 1 means the diet was followed
▶ 𝑌 = 1 or 0 based on whether arthritis was observed
▶ The starred entries are what we observe

Individual 𝑊𝑖 𝑌𝑖(0) 𝑌𝑖(1) Causal effect
1 1 0 0 (∗) 0
2 1 0 0 (∗) 0
3 1 0 0 (∗) 0
4 1 0 0 (∗) 0
5 0 1 (∗) 1 0
6 0 1 (∗) 1 0
7 0 1 (∗) 1 0
8 0 1 (∗) 1 0
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Example 2: Potential outcomes

The same table can also be viewed as an extreme version of the e-mail example
in the potential outcomes framework.
▶ 𝑊 = 1 means the promotion was received
▶ 𝑌 = 0 means the individual converted; 𝑌 = 1 means the individual did not

convert.
▶ The starred entries are what we observe
In each case the association is measured by examining the average difference of
observed outcomes, which is 1. But the causal effects are all zero.
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Mistakenly inferring causation

Suppose, e.g., in the arthritis data that you mistakenly infer causation, and
encourage people to diet; half the non-dieters take up your suggestion.
Suppose you collect the same data again after this intervention:

Individual 𝑊𝑖 𝑌𝑖(0) 𝑌𝑖(1) CE
1 1 0 0 (∗) 0
2 1 0 0 (∗) 0
3 1 0 0 (∗) 0
4 1 0 0 (∗) 0
5 1 1 1 (∗) 0
6 1 1 1 (∗) 0
7 0 1 (∗) 1 0
8 0 1 (∗) 1 0

Now the average outcome among the
non-dieters is still 1, while the average
outcome among the dieters rises to
0.33.
Conflating association and causation
would suggest the intervention
actually made things worse!
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Estimation of causal effects



“Solving” the fundamental problem

We can’t observe both potential outcomes for each individual.
So we have to get around it in some way. Some examples:
▶ Observe the same individual at different points in time
▶ Observe two individuals who are nearly identical to each other, and give

one treatment and the other control
Both are obviously of limited applicability. What else could we do?
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The average treatment effect

One possibility is to estimate the average treatment effect (ATE) in the
population:

ATE = 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)].
In doing so we lose individual information, but now we have a reasonable
chance of getting an estimate of both terms in the expectation.
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Estimating the ATE

Let’s start with the obvious approach to estimating the ATE:
▶ Suppose 𝑛1 individuals receive the treatment, and 𝑛0 individuals receive

control.
▶ Compute:

ÂTE = 1
𝑛1 ∑

𝑖∶𝑊𝑖=1
𝑌𝑖(1) − 1

𝑛0 ∑
𝑖∶𝑊𝑖=0

𝑌𝑖(0).

Note that everything in this expression is observed.
But is this an unbiased estimate of the ATE?
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When does our estimator work?

If both 𝑛1 and 𝑛0 are large, then (by the law of large numbers):

ÂTE ≈ 𝔼[𝑌 (1)|𝑊 = 1] − 𝔼[𝑌 (0)|𝑊 = 0].

But we want to estimate:

ATE = 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)].

So our estimator works when:

𝔼[𝑌 (1)|𝑊 = 1] − 𝔼[𝑌 (0)|𝑊 = 0] = 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)].

When is this true?
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No selection bias
We say there is no selection bias when:

𝔼[𝑌 (1)|𝑊 = 1] = 𝔼[𝑌 (1)|𝑊 = 0] = 𝔼[𝑌 (1)]; and
𝔼[𝑌 (0)|𝑊 = 1] = 𝔼[𝑌 (0)|𝑊 = 0] = 𝔼[𝑌 (0)].

In words:
▶ The average potential outcome under treatment is the same, regardless of

whether the individual was assigned to treatment or control.

▶ The average potential outcome under control is the same, regardless of
whether the individual was assigned to treatment or control.

When this holds, both treatment and control groups are representative of the
overall population, and our estimator ÂTE is unbiased for ATE. (See appendix
for proof.)
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overall population, and our estimator ÂTE is unbiased for ATE. (See appendix
for proof.)

18/39



No selection bias
We say there is no selection bias when:

𝔼[𝑌 (1)|𝑊 = 1] = 𝔼[𝑌 (1)|𝑊 = 0] = 𝔼[𝑌 (1)]; and
𝔼[𝑌 (0)|𝑊 = 1] = 𝔼[𝑌 (0)|𝑊 = 0] = 𝔼[𝑌 (0)].

In words:
▶ The average potential outcome under treatment is the same, regardless of

whether the individual was assigned to treatment or control.

▶ The average potential outcome under control is the same, regardless of
whether the individual was assigned to treatment or control.

When this holds, both treatment and control groups are representative of the
overall population, and our estimator ÂTE is unbiased for ATE. (See appendix
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Selection bias: Example

Arthritis example: Assignment to the diet was correlated with absence of
arthritis:

▶ 𝔼[𝑌 (0)|𝑊 = 1] = 0 (those who chose the diet would not have had arthritis,
even without the diet)

▶ 𝔼[𝑌 (0)|𝑊 = 0] = 1 (those who did not choose the diet had arthritis)
So the potential outcomes under control are different for those who chose the
diet vs. those who did not ⟹ selection bias.
(The same type of reasoning applies to the e-mail example: there the choice of
who received the promotion led to selection bias.)
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Confounding

When selection bias is present, we are comparing different types of people.

▶ Average outcome for treatment group under treatment ≈ 𝔼[𝑌 (1)|𝑊 = 1];
▶ Average outcome for control group under control ≈ 𝔼[𝑌 (0)|𝑊 = 0]
▶ But if the groups are different, this difference reflects both:

1. The causal effect of treatment, and
2. The inherent differences between the two groups

When selection bias is present, we say that there is confounding: inherent
differences between the two groups prevent us from precisely identifying the
causal effect of treatment.
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Confounding: A real-world example

In August 2021, as the Delta variant of COVID-19 was spreading, data from
Israel was released:
▶ 18.2% of the population (1.3M) was not vaccinated; 78.7% of the population

was vaccinated.
▶ 16.4 severe cases were observed per 100K unvaccinated individuals.
▶ 5.3 severe cases were observed per 100K vaccinated individuals.
This suggested a vaccine effectiveness of 1 − 5.3/16.4 ≈ 67.5%, which was much
lower than the reported 80-90% effectiveness of vaccines in trials...had the
vaccine lost effectiveness in Israel?
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Confounding by age

Two key facts about the Israeli population:

▶ Age disparity in vaccination:
▶ 90.4% of residents > 50 years old were vaccinated (2.1M people).
▶ Only 73% of residents < 50 years old were vaccinated (3.5M people).

▶ Age disparity in severe disease risk: Older people are at much higher risk of
severe disease from COVID-19 than younger people.

In other words, through age, vaccination status (𝑊 ) was correlated with severe
disease risk given vaccination status (𝑌 (0), 𝑌 (1)), creating a selection bias.
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Confounding by age

When we stratify the data by age (and normalize per 100,000 people), we see a
very different picture:

Severe cases per 100k Vaccine
Age group Not Vax Fully Vax Effectiveness
< 50 years 3.9 0.3 91.8%
> 50 years 91.9 13.6 85.2%
Overall 16.4 5.3 67.5%

Within each age group, vaccines were in fact highly effective (85–92%).
In other words, the “perceived” drop in effectiveness could be almost entirely
explained by confounding.
(Example adapted from Jeffrey Morris, Covid Data Science blog, August 17, 2021.)
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Simpson’s paradox

This form of selection bias is called Simpson’s paradox:
When a confounding variable is present, the association observed in the overall
population can be substantially different (or even reversed) compared to the
true causal effects when we stratify by the confounding variable.
The key issue here is that we are trying to use observational data to study causal
effects, i.e., data where we don’t control assignment.
Confounding due to selection bias is a key challenge in causal inference from
observational data; we will discuss this later in the course.
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Another example: Berkeley admissions

Berkeley was sued for gender bias in admissions to graduate school based on
1973 statistics: 44% of men were admitted, while only 35% of women were
admitted.
But based on individual departments’ admissions statistics, there did not appear
to be statistically significant gender-based discrimination (in fact if anything,
some departments tended to favor women).
The evidence in the case revealed an unusual example of Simpson’s paradox:
women were systematically applying to majors that were much more
competitive, creating a selection bias.

25/39



Randomized experiments



Randomization eliminates selection bias

If assignment 𝑊 is randomized independently across units, then 𝑊 is
independent of the potential outcomes 𝑌 (0) and 𝑌 (1).
This means:

𝔼[𝑌 (1)|𝑊 = 1] = 𝔼[𝑌 (1)|𝑊 = 0] = 𝔼[𝑌 (1)]
𝔼[𝑌 (0)|𝑊 = 1] = 𝔼[𝑌 (0)|𝑊 = 0] = 𝔼[𝑌 (0)]

There is no selection bias, and our estimator ÂTE is unbiased.
This is why randomized experiments are the “gold standard” for causal inference.
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The completely randomized design

We now focus on causal inference when the data is generated by a randomized
experiment.1

In a randomized experiment, the assignment mechanism is random, and in
particular independent of the potential outcomes.
Specifically, we study a completely randomized design (CRD): we randomly
assign units to treatment and control, but constrain the total number of
treatment units to be fixed at 𝑛1, and the total number of control units to be fixed
at 𝑛0.
How do we analyze the data from such an experiment?

1Other names: randomized controlled trial; A/B test
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The estimator
Let’s go back to ÂTE:

ÂTE = 1
𝑛1 ∑

𝑖∶𝑊𝑖=1
𝑌𝑖(1) − 1

𝑛0 ∑
𝑖∶𝑊𝑖=0

𝑌𝑖(0).

What is the variance of the sampling distribution of this estimator for a
randomized experiment?

▶ For those 𝑖 with 𝑊𝑖 = 1, 𝑌𝑖(1) is an i.i.d. sample from the population marginal
distribution of 𝑌 (1), with variance 𝜎2

1 (estimated by sample variance 𝜎̂2
1 ).

▶ For those 𝑖 with 𝑊𝑖 = 0, 𝑌𝑖(0) is an i.i.d. sample from the population marginal
distribution of 𝑌 (0), with variance 𝜎2

0 (estimated by sample variance 𝜎̂2
0 ).

▶ The variance of the sampling distribution of ÂTE is estimated as:

ŜE2
=

𝜎̂2
1

𝑛1
+

𝜎̂2
0

𝑛0
.
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Asymptotic normality

For large 𝑛1, 𝑛0, the central limit theorem tells us that the sampling distribution of
ÂTE is approximately normal:
▶ with mean ATE (because it is consistent when the experiment is

randomized)
▶ with standard error ŜE from the previous slide.
We can use these facts to analyze the experiment using the tools we’ve
developed.
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Confidence intervals, hypothesis testing, p-values

Using asymptotic normality, we can:
▶ Build a 95% confidence interval for ATE, as:

[ÂTE − 1.96ŜE, ÂTE + 1.96ŜE].

▶ Test the null hypothesis that ATE = 0, by checking if zero is in the
confidence interval or not.

▶ Compute a p-value for the resulting test, as the probability of observing a t
statistic as extreme as |ÂTE/ŜE| if the null hypothesis were true.
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SUTVA and interference [∗]



SUTVA and interference [∗]
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Interference [∗]

Implicitly throughout our discussion of causal inference, we have assumed there
is no interference between treatment and control:
Whether or not individual 𝑖 receives treatment or control has no impact on the
causal effect of treatment on another individual 𝑗.
When might this fail?
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Interference [∗]

Suppose Airbnb decides to A/B test a new feature that dramatically simplifies
the booking process for a guest.
In the test, guests are randomized at when they start the booking process;
control is the old experience, treatment is the new experience.
It is found that customers with the new experience book much more frequently
than customers with the old experience, but the estimated ÂTE is an
overestimate. Why?
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Interference [∗]

Both treatment and control see the same inventory of host listings!
So if treatment individuals book more often, that reduces the inventory available
to control individuals, and implies their booking rates will be lower.
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SUTVA [∗]

If interference is present, the “potential outcomes” for an individual are much
more complicated: they depend on not just the treatment a single individual
received, but also on the treatment other individuals received.
With 𝑛 individuals, this is 2𝑛 potential outcomes for each individual!
The assumption that there is no interference between treatment and control is
part of the stable unit treatment value assumpton (SUTVA) in econometrics and
causal inference.
(The other part of SUTVA is that there is only one form of treatment or control:
e.g., if treatment is “taking a drug”, there should be no variation in the treatment
group as to how much of the drug is taken.)
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Appendix [∗]



Formal theorem on selection bias [∗]

Theorem
Assume that observations are independently drawn from the population. Then if
there is no selection bias, ÂTE is unbiased as an estimate of the ATE:

𝔼[𝑌 (1)|𝑊 = 1] = 𝔼[𝑌 (1)|𝑊 = 0] = 𝔼[𝑌 (1)]; 𝔼[𝑌 (0)|𝑊 = 1] = 𝔼[𝑌 (0)|𝑊 = 0] = 𝔼[𝑌 (0)].

In other words: the estimator ÂTE is unbiased when assignment to treatment is
uncorrelated with the potential outcomes.
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Proof of the theorem [∗]
Let𝐖 = (𝑊1, … , 𝑊𝑛) denote the assignments of the 𝑛 observations.
Let 𝑛1 = ∑𝑛

𝑖=1 𝑊𝑖 and 𝑛0 = 𝑛 − 𝑛1 be the number of units assigned to treatment
and control, respectively.
With no selection bias, for each 𝑖:

𝔼[𝑌𝑖(1)|𝐖] = 𝔼[𝑌𝑖(1)|𝑊𝑖] = 𝔼[𝑌𝑖(1)]; 𝔼[𝑌𝑖(0)|𝐖] = 𝔼[𝑌𝑖(0)|𝑊𝑖] = 𝔼[𝑌𝑖(0)] for all 𝑖.

Therefore, conditional on the assignments𝐖:

𝔼[ÂTE|𝐖] = 1
𝑛1 ∑

𝑖∶𝑊𝑖=1
𝔼[𝑌𝑖(1)|𝐖] − 1

𝑛0 ∑
𝑖∶𝑊𝑖=0

𝔼[𝑌𝑖(0)|𝐖]

= 1
𝑛1 ∑

𝑖∶𝑊𝑖=1
𝔼[𝑌𝑖(1)] − 1

𝑛0 ∑
𝑖∶𝑊𝑖=0

𝔼[𝑌𝑖(0)].
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Proof of the theorem (continued) [∗]

Since units are drawn independently from the population, we have
𝔼[𝑌𝑖(1)] = 𝔼[𝑌 (1)] and 𝔼[𝑌𝑖(0)] = 𝔼[𝑌 (0)] for all 𝑖.
Therefore:

𝔼[ÂTE|𝐖] = 1
𝑛1 ∑

𝑖∶𝑊𝑖=1
𝔼[𝑌 (1)] − 1

𝑛0 ∑
𝑖∶𝑊𝑖=0

𝔼[𝑌 (0)]

= 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)] = ATE.

Since this holds for any assignment pattern𝐖:

𝔼[ÂTE] = 𝔼𝐖[𝔼[ÂTE|𝐖]] = 𝔼𝐖[ATE] = ATE.

Thus ÂTE is unbiased when there is no selection bias.
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