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ÂTE from a randomized experiment

Suppose we run a completely randomized design (CRD) experiment, and
compute the following estimate of the average treatment effect ATE:

ÂTE = 1
𝑛1 ∑

𝑖∶𝑊𝑖=1
𝑌𝑖(1) − 1

𝑛0 ∑
𝑖∶𝑊𝑖=0

𝑌𝑖(0).

In the last lecture, we noted that ÂTE is an unbiased estimator for ATE.
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Regression analysis

Notice that ÂTE is the difference between two groups: those where 𝑊 = 1, and
those where 𝑊 = 0.
We saw earlier in the course that we can also compute such differences using
OLS linear regression, with 𝑌 as the outcome and 𝑊 as the sole feature.

3/34



Regression analysis

In particular, suppose we use OLS to fit the following model:

𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 .

In a randomized experiment, 𝑊𝑖 = 0 or 𝑊𝑖 = 1 for every observation.
Therefore:
▶ ̂𝛽0 is the average outcome in the control group.
▶ ̂𝛽0 + ̂𝛽𝑊 is the average outcome in the treatment group.
▶ So ̂𝛽𝑊 = ÂTE!
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An example in R
I constructed a synthetic “experiment” where 𝑛1 = 𝑛0 = 1000, and:

𝑌𝑖 = 1 + 𝑊𝑖 + 𝜖𝑖,

where 𝜖𝑖 ∼ 𝒩 (0, 1). (Question: what is the true ATE?)
lm(formula = Y ~ 1 + W, data = df)
...
Coefficients:

Estimate Std. Error
(Intercept) 10.01399 0.03157
W 0.96854 0.04464
...

The estimated standard error on ̂𝛽1 = ÂTE is the same as the estimated standard
error we would obtain using the direct formula √𝜎̂2

1 /𝑛1 + 𝜎̂2
0 /𝑛0 in the last lecture.
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Using covariates



Adding covariates to the regression

In a randomized experiment, we often observe additional covariates 𝐗𝑖 for each
individual 𝑖 before treatment assignment (e.g., age, gender, baseline
measurements).
Adding these covariates to the regression can improve the precision of the
estimate of ATE, i.e., lower the variance (and thus the standard error).
We say that we are controlling for these covariates (the added covariates are
referred to as regression controls).
Important note: The regression controls must be collected pre-treatment,
otherwise you can introduce confounding!
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Important warning

The covariates 𝐗𝑖 must be observed pre-treatment!
Why? If 𝑋 is affected by the treatment, then controlling for 𝑋 can introduce bias.
Example: In a drug trial, if 𝑋 is a post-treatment measurement of blood pressure
after taking the drug, then some of the difference between treatment and
control outcomes may be mistakenly attributed to variation in the
(post-treatment) 𝑋 rather than the actual treatment 𝑊 .
Always ensure covariates are measured before treatment assignment.
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OLS regression with covariates

We can adapt the preceding regression by adding covariates:

𝑌 ∼ ̂𝛽𝑊 𝑊 + ( ̂𝛽1𝑋1 + ⋯ + ̂𝛽𝑝𝑋𝑝).

As long as we randomized assignment, in this model we can still interpret ̂𝛽𝑊 as
an estimate of the ATE.
This is because randomization ensures that 𝑊 is uncorrelated with both 𝑋 and
the potential outcomes.
Note: This interpretation is valid even if the true population model is not linear in
the covariates 𝑋⃗; if you choose to interpret the coefficients on the covariates as
well, then as usual assumptions (A1)-(A3) are needed for valid inference.
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Regression controls: Interpretation

For now suppose there is a single continuous covariate 𝑋. In the regression
𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 + ̂𝛽𝑋𝑋, we can interpret the model as follows:
For an individual with covariate 𝑋:
▶ 𝑌 (0) ≈ ̂𝛽0 + ̂𝛽𝑋𝑋 (baseline outcome under control)
▶ 𝑌 (1) ≈ ̂𝛽0 + ̂𝛽𝑊 + ̂𝛽𝑋𝑋 (outcome under treatment)
▶ Individual treatment effect ≈ ̂𝛽𝑊
In this model, 𝑋 helps explain variation in the baseline outcome 𝑌 (0), but the
treatment effect is assumed constant across individuals.
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Regression controls: An example

I created a synthetic experiment where 𝑛0 = 𝑛1 = 1000.
For each individual 𝑖, 𝑋𝑖 ∼ 𝒩 (0, 1) is a pre-existing covariate, and 𝑊𝑖 is the
treatment indicator.
I constructed 𝑌𝑖 as:

𝑌𝑖 = 10 + 𝑊𝑖 + 2𝑋𝑖 + 𝜖𝑖,
where 𝜖𝑖 ∼ 𝒩 (0, 1).
In this example:
▶ The true ATE is 1.0 —it does not vary depending on 𝑋.
▶ However, some of the variation in 𝑌𝑖 is explained by 𝑋 as well.
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Controlling for observables: An example

Suppose we regress 𝑌 on the treatment indicator 𝑊 alone:
lm(formula = Y ~ 1 + W, data = df)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.9606 0.0719 138.53 <2e-16 ***
W 1.1041 0.1017 10.86 <2e-16 ***
...

The standard error on 𝑊 is 0.1017.
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Controlling for observables: An example
Now suppose we include the covariate 𝑋 in the regression:
lm(formula = Y ~ 1 + W + X, data = df)
...
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.95913 0.03218 309.50 <2e-16 ***
W 1.02709 0.04552 22.57 <2e-16 ***
X 2.00650 0.02246 89.32 <2e-16 ***
...

Notice that the standard error ismuch smaller on the coefficient of 𝑊 : it
dropped from 0.1017 to 0.04552.
This is because 𝑋 explains much of the variation in 𝑌 , reducing residual variance.
(Note: (A1)-(A3) hold in this synthetic example; if you are not sure if (A3) holds,
you should use the bootstrap or robust standard errors.)
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Why does controlling help?

By including 𝑋 in the regression, we account for variation in outcomes that is
due to 𝑋, not due to treatment.
This reduces the residual variance 𝜎̂2 (i.e., the sample variance of the residuals),
which in turn reduces the standard error of ̂𝛽𝑊 .
Even though randomization ensures unbiasedness, controlling for pre-treatment
covariates improves precision.
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Imperfect randomization
Controlling for observed covariates can potentially offer another benefit:
If the randomization was less than perfect, regression controls can mitigate
selection bias.
How this works:
▶ Suppose, e.g., individuals with higher 𝑋 were more likely to receive

treatment in the experiment.
▶ Ignoring this creates omitted variable bias: part of the variation in 𝑌 is

explained by 𝑋, not by treatment.
▶ Controlling for 𝑋 can remove this bias.
But a warning: Of course, if randomization was imperfect, then we also can’t be
sure that just the covariates we observe are sufficient to remove selection bias!
We will have more to say about the use of observed covariates to remove
confounding in the next lecture.
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Interacted effects regression



Interacted effects regression

Controlling for covariates shows that we can reduce variance compared to the
simple difference-in-means estimator ÂTE. Can we do better?
For simplicity, let’s continue to assume a single continuous covariate. Consider
the interacted effects (IE) regression:

𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 + ̂𝛽𝑋𝑋 + ̂𝛽𝑊 𝑋𝑊 × (𝑋 − 𝑋̄).

In this regression, we add an interaction term between treatment and centered
covariate (𝑋 − 𝑋̄).
This is a more flexible specification: It also allows for the possibility that now the
treatment 𝑊 also changes the slope on the covariate 𝑋.
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Why center the covariates?
In the IE regression:

𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 + ̂𝛽𝑋𝑋 + ̂𝛽𝑊 𝑋𝑊 × (𝑋 − 𝑋̄),

why do we use (𝑋 − 𝑋̄) instead of just 𝑋 in the interaction?
Centering ensures that ̂𝛽𝑊 directly estimates the ATE.
Without centering:
▶ ̂𝛽𝑊 would estimate the treatment effect when 𝑋 = 0.
▶ This may not be meaningful (e.g., if 𝑋 is age, 𝑋 = 0 is not in our population).
With centering:
▶ Informally, ̂𝛽𝑊 estimates the treatment effect at the average value of 𝑋.
▶ Since the ATE can be written as: 𝔼𝑋[𝔼𝑌 [𝑌 (1) − 𝑌 (0)|𝑋]], this intuition can be

used to show that ̂𝛽𝑊 converges to ATE as the sample size grows (i.e., that it
is consistent).
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Efficiency of IE regression

In fact, it can be shown that if the IE regression is used to estimate ATE, then it
has several desirable properties as the sample size increases; asymptotically:
▶ It is consistent for ATE, even if the true model is not linear in 𝑋, or if errors

are heteroskedastic (i.e., (A1)-(A3) need not hold);
▶ It has variance at least as small as the variance of the estimate of ATE from

the simple regression 𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 + ̂𝛽𝑋𝑋, and can be strictly smaller.
In practice, therefore, the implication is that when analyzing data from
randomized experiments you should always use the IE regression instead of
simple regression.
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SEs for IE regression

When using the IE regression, it is important to note that the estimated standard
error in the standard OLS regression table will be incorrect.
This is because we have centered the covariate 𝑋𝑖 using a sample mean that is
computed using the same data that we use to fit the regression; this favorably
reduces the variation in the coefficient estimate ̂𝛽𝑊 .
As a result, in general when using IE regression, you should use either the
bootstrap or robust standard errors. (See R Markdown notebook for details.)
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Robust standard errors for IE regression in R

We briefly discussed robust standard errors in Lecture 9.
The following R code shows how to implement the IE regression with robust
standard errors using the sandwich package:
library(sandwich)
library(lmtest)

# Fit IE regression with centered covariate
model_ie <- lm(Y ~ W + X + W:I(X - mean(X)), data = df)

# Display coefficients with robust SEs (HC3 type)
coeftest(model_ie, vcov = vcovHC(model_ie, type = "HC3"))
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Robust standard errors for IE regression in R

We obtain the following regression output in the previous example; note that the
SE on ̂𝛽𝑊 , 0.045558, is similar to the SE on ̂𝛽𝑊 in the simple regression, 0.04552.
This is because in this case, there is no heterogeneity in the treatment effect with
varying 𝑋.

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.959148 0.032070 310.5441 <2e-16 ***
W 1.027095 0.045558 22.5449 <2e-16 ***
X 1.985550 0.031946 62.1535 <2e-16 ***
W:X_centered 0.041811 0.045280 0.9234 0.3559
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Heterogeneous treatment effects



Beyond the average treatment effect

So far we’ve focused on estimating the average treatment effect (ATE) across the
entire population.
But what if run a randomized experiment, and the treatment effect varies across
individuals?
These are called heterogeneous treatment effects (HTE).
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Formalizing heterogeneous treatment effects

The conditional average treatment effect (CATE) given covariates 𝑋⃗ is:

CATE(𝑋⃗) = 𝔼[𝑌 (1) − 𝑌 (0)|𝑋⃗].

This measures the average treatment effect among individuals with covariate
value 𝑋⃗.
In particular, it allows the possibility that the causal effect differs across
individuals.
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Estimating CATE via IE regression

Again suppose only a single continuous covariate 𝑋. Recall the IE regression we
introduced earlier:

𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 + ̂𝛽𝑋𝑋 + ̂𝛽𝑊 𝑋𝑊 × (𝑋 − 𝑋̄).

This model actually directly allows us to estimate the CATE, if we believe the true
population model is linear in 𝑋 (i.e., (A1) holds).
Specifically, for an individual with covariate 𝑋:
▶ 𝑌 (0) ≈ ̂𝛽0 + ̂𝛽𝑋𝑋; and
▶ 𝑌 (1) ≈ ̂𝛽0 + ̂𝛽𝑊 + ( ̂𝛽𝑋 + ̂𝛽𝑊 𝑋)𝑋 − ̂𝛽𝑊 𝑋𝑋̄; so
▶ ĈATE(𝑋) = ̂𝛽𝑊 + ̂𝛽𝑊 𝑋(𝑋 − 𝑋̄)
Note that ̂𝛽𝑊 is the estimated CATE at 𝑋 = 𝑋̄, i.e., an estimate of the ATE.
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Interpreting the interaction coefficient

In the model 𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 + ̂𝛽𝑋𝑋 + ̂𝛽𝑊 𝑋𝑊 × 𝑋:
▶ ̂𝛽𝑊 is the estimated treatment effect when 𝑋 = 0.
▶ ̂𝛽𝑊 𝑋 measures how the treatment effect changes as 𝑋 increases by one unit.
▶ If ̂𝛽𝑊 𝑋 > 0, the treatment effect is larger for individuals with higher 𝑋.
▶ If ̂𝛽𝑊 𝑋 < 0, the treatment effect is smaller for individuals with higher 𝑋.
▶ If ̂𝛽𝑊 𝑋 ≈ 0, there is little evidence of heterogeneous treatment effects.
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Interactions: Example with no HTE

Recall our earlier example where the true model is:

𝑌𝑖 = 10 + 𝑊𝑖 + 2𝑋𝑖 + 𝜖𝑖.

There is no heterogeneity here: the treatment effect is 1.0 for everyone.
What happens if we estimate a model with interactions?
When we estimated a model with interactions, we obtained ̂𝛽𝑊 𝑋 = 0.041811 and
a p-value of 0.3559, which is as expected.
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Interactions: Example with HTE

Now suppose we change the model so the treatment effect does vary with 𝑋:

𝑌𝑖 = 10 + (1 + 2𝑋𝑖)𝑊𝑖 + 2𝑋𝑖 + 𝜖𝑖.

Now the treatment effect is 1 + 2𝑋𝑖, which increases with 𝑋.
What happens when we estimate a model with interactions on this data?
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Interactions: Example with HTE
Here is what we obtain if we estimate the IE regression with robust standard
errors:
...

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.999627 0.031007 322.495 < 2.2e-16 ***
W 1.043747 0.044590 23.408 < 2.2e-16 ***
X 1.997663 0.031575 63.268 < 2.2e-16 ***
W:X_centered 1.976603 0.044862 44.060 < 2.2e-16 ***
...

Now the interaction coefficient is large (1.98) and significant.
This correctly captures that the treatment effect increases with 𝑋:

ĈATE(𝑋) = 1.04 + 1.98𝑋.
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Testing for heterogeneous treatment effects

In the IE regression:

𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 + ̂𝛽𝑋𝑋 + ̂𝛽𝑊 𝑋𝑊 × (𝑋 − 𝑋̄),

how do we test whether treatment effects are heterogeneous?
Run a hypothesis test on the interaction coefficient:

▶ 𝐻0: 𝛽𝑊 𝑋 = 0 (homogeneous treatment effects)
▶ 𝐻1: 𝛽𝑊 𝑋 ≠ 0 (heterogeneous treatment effects)
This is a standard hypothesis test on ̂𝛽𝑊 𝑋 , using the reported t-statistic.
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Benefits of modeling interactions

Including interaction terms in regression analysis of experiments can provide
several benefits:

▶ Efficiency: Always at least as efficient as simple regression.
▶ Robustness: Consistent for ATE even under model misspecification.
▶ Heterogeneity: Understand which individuals or subgroups benefit most (or

least) from treatment.
▶ Targeting: Identify individuals who would benefit most from treatment for

policy or business decisions.
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More flexible models



Limitations of OLS regression approaches

A key limitation of the OLS regression approachees is that the set of
pre-treatment features must be “small” compared to the sample size.
Otherwise, as we have seen previously in this course, OLS can overfit to the
features.
In the worst case, if there aremore features than samples, OLS will not even
have a unique solution.
This is odd, since we should be able to use any additional features to obtain an
even more precise estimate of ATE...
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From OLS to machine learning
Consider the IE regression, but with uncentered 𝑋:

𝑌 ∼ ̂𝛽0 + ̂𝛽𝑊 𝑊 + ̂𝛽𝑋𝑋 + ̂𝛽𝑊 𝑋𝑊 𝑋.

This can be equivalently written as two separate linear regressions:

▶ For control group (𝑊 = 0): 𝑌 ∼ ̂𝜇0(𝑋), where ̂𝜇0(𝑋) = ̂𝛽0 + ̂𝛽𝑋𝑋
▶ For treatment group (𝑊 = 1): 𝑌 ∼ ̂𝜇1(𝑋), where

̂𝜇1(𝑋) = ( ̂𝛽0 + ̂𝛽𝑊 ) + ( ̂𝛽𝑋 + ̂𝛽𝑊 𝑋)𝑋
The ATE estimate is then: ̂𝛽𝑊 = 1

𝑛 ∑𝑛
𝑖=1[ ̂𝜇1(𝑋𝑖) − ̂𝜇0(𝑋𝑖)]. (This is the same

estimate we would obtain from the centered IE regression.)
Natural question: If we’re fitting two separate models anyway, why restrict
ourselves to linear regression? Why not use more flexible machine learning
models?
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The T-learner

Now suppose there are many features. The preceding discussion motivates the
following approach, called the T-learner (“T” for “two”):

1. Fit a regression model ̂𝜇1(𝑋⃗) to predict 𝑌 using only the treatment group
data (𝑊 = 1).

2. Fit a regression model ̂𝜇0(𝑋⃗) to predict 𝑌 using only the control group data
(𝑊 = 0).
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The T-learner (continued)
3. For each individual 𝑖, estimate their CATE:

ĈATE(𝐗𝑖) = ̂𝜇1(𝐗𝑖) − ̂𝜇0(𝐗𝑖).

4. Estimate the average treatment effect by averaging CATE over all
individuals:

ÂTE = 1
𝑛

𝑛

∑
𝑖=1

ĈATE(𝐗𝑖) = 1
𝑛

𝑛

∑
𝑖=1

[ ̂𝜇1(𝐗𝑖) − ̂𝜇0(𝐗𝑖)].

The models ̂𝜇1 and ̂𝜇0 can be any regression method: linear regression, random
forests, neural networks, etc.
Note: Computing standard errors is not possible in closed form for such
methods; usually resampling approaches like the bootstrap are used.
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Looking ahead: Causal inference from observational data

The T-learner is one example of a modern, machine-learning based approach to
causal inference.
In the next lecture, we will discuss how such methods can be useful even in
settings where there is possible selection bias, if we believe that observed
features account for the selection bias.
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