MS&E 226: Fundamentals of Data Science

Lecture 15: Causal inference from observational data

Ramesh Johari
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From experiments to observational data
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"Observational data” refers to settings where the treatment was not necessarily
assigned at random; as we learned, this is a setting where we are vulnerable to
selection bias (or confounding).
Typically, our data consists of:

P the outcome of interest Y;

P the treatment assignment indicator W € {0, 1}, and

P> features or covariates X.

Informally, observational causal inference is relies on X to help us mitigate or
eliminate selection bias, and recover accurate estimates of the causal effect of
treatment.



A motivating example



Example: Treatment and disease severity

Let's consider a stylized example:
P> Y: Disease severity; larger Y means worse outcome
P W € {0,1}: Indicator for whether treatment is taken to reduce disease risk
P X,: Age; uniformly distributed on [20, 50]
P X, € {0,1}: High blood pressure (HBP) indicator; P(X, = 1) = 0.1
Data generating process (n = 2000):

Y =70-5W + X, + 10X, +¢, €~ N(0,4)
exp(0.04X, +0.2X, — 1.5)
1+ exp(0.04X, + 02X, — 1.5)

e(X)=PW =1| X,,X,) = (logistic)
Older, HBP = higher severity, and more likely to get treatment.

Note that ATE = f, — the treatment effect is the same for all individuals,
regardless of X, X,.

3/32



The propensity score

The probability of treatment given X, e(x) = P(W = 1|X), is called the propensity
score.

It varies from 0.332 (when age X; = 20 and HBP absent, X, = 0)
to 0.668 (when age X; = 50 and HBP present, X, = 1).
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Confounding
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Suppose we ignore X, X,, and just use the basic regression Y ~ f, + S, W.

Coefficients:

Estimate Std. Error ...
(Intercept) 104.7978 0.2889 ...
W -2.02% 0.4112 ...

The naive estimate is —2.03, which is badly biased for the true ATE = -5.

Age and HBP both are confounders; in particular, older patients and those with
HBP are more likely to be treated, but these patients have worse outcomes at
baseline, masking the true benefit of treatment.



Controlling for observables

Now estimate: Y ~ fy + By W + B, X; + fr X,.

Coefficients:

Estimate Std. Error ...
(Intercept) 70.149548 ©.193826 ...
W -4.949812 0.091962 ...

By controlling for observables, we recover an (approximately) unbiased estimate
(95% confidence interval [-5.13, —4.77]).

Why? Among patients of the same age with same HBP status, treatment
assignment is as if it were randomly assigned.
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The unconfoundedness assumption
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This is a key assumption in all causal inference from observational data, referred
to as unconfoundedness:

Conditional on X, the treatment assignment W is independent of the potential
outcomes Y (0),Y(1).

(Also called: ignorability, selection on observables, no hidden confounders.)

The idea is that to the extent that there is any selection bias, i.e., any correlation
between treatment and the potential outcomes, it is only because of the
observed features.



The main limitation of observational data
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Unconfoundedness makes observational causal inference possible, because it
allows us to “pretend” assignment was random (given the features we observe).

But in general, unconfoundedness is an unverifiable claim!

In other words, because by definition hidden confounders are not observed,
“you don’t know what you don't know".

The rest of this lecture should be consumed with this warning in mind:
In observational causal inference, there is always a chance that you were misled
by hidden confounding.

The goal is to reasonably argue that you have ruled out major sources of
confounding through the features you observed.



Unconfoundedness and the “simple” regression
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Returning to the “simple” OLS regression Y ~ fy+ By W + f, X; + X5, when will
by, be a consistent estimate of the true ATE?

Unconfoundedness ensures the available (observable) control covariates
completely resolve any potential confounding.

Under unconfoundedness, it can be shown that ﬁW consistently estimates the
ATE as long as the model itself is correct: the true treatment effect is constant
(regardless of covariates), and the true outcome model is linear in the covariates.

In our synthetic example, these assumptions held, which is why we obtain an
accurate estimate of the true ATE.



Propensity scores



More covariates

Since we want unconfoundedness to hold, it's natural to want as many covariates
as possible to help us remove selection bias.

What should we do if the set of features is very large, i.e., X has high dimension?

Last lecture we suggested the T-learner (T for “two”"):

P> Train separate machine learning models i,(X) to predict Y for treated units
(W =1), and fiy(X) to predict Y for control units (W = 0).

P Compute (ﬁ(Xi) = i, (X;) — fy(X;) for each uniti in the sample.
P Compute ATE = (I/n) 3", CATE(X,).
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But the T-learner can be problematic...
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The T-learner is trying to estimate the potential outcomes separately, instead of
the CATE directly.

ML models can have bias — e.g., models like lasso introduce bias to reduce
variance when there are many features. We can't be sure the bias of the two
models fi; and fi, will cancel out when we compute CATE, which means our
eventual estimate ATE may be biased.

Further, the resulting ATE estimate can have high variance because we are
learning two separate models (with many covariates each). These might
individually have high variance, even if CATE(X) itself does not vary much
across X.

Finally, (in part because of potentially high variance), we don't have reliable
ways to quantify uncertainty (standard errors and confidence intervals).



A key result: The propensity score suffices
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Hypothetically, consider a collection of individuals with different features X, with
the same propensity score p = e(X) (e.g., some are older without HBP, others are
younger with HBP).

Some of these people with propensity score p will be treated, and some will not.
But if all we know about them is their propensity score, we learn nothing about
their features — regardless of their treatment assignment!

In other words: Among individuals with the same propensity score, treatment is
independent of features.



A key result: The propensity score suffices
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Under unconfoundedness, selection bias is only due to observable features.

Therefore, among individuals with the same propensity score, there is no further
selection bias:

Under unconfoundedness, treatment is independent of the potential outcomes,
among individuals with the same the propensity score (i.e., W is independent of
Y (0),Y(1), given e(X) = p).

In other words: It is as if for all individuals with the same propensity score p, we
have run a randomized experiment with probability p of treatment assignment.



The IPW estimator



Using the propensity score

Itis as if for all individuals with the same propensity score p, we have run a
randomized experiment with probability p of treatment assignment.

Imagine we had a group of n individuals, all with known propensity score p;
some are treated (W; = 1), and some are not (W; = 0).

How do we estimate the average treatment effect for this group?
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Estimating ATE within a propensity score group
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For a group with the same propensity score p, treatment is “as if” random.

If n total individuals in this group, then:

P> For approximately np individuals, W; = 1, and we observe Y; = Y,(1).

P> For approximately n(1 — p) individuals, W; = 0, and we observe Y; = Y;(0).
So to estimate E[Y(1)] and E[Y (0)]:

—— 1 Y,
E[Y(D] ~ — —
n itW;=1 p
— 1 Y,
E[Y(0)] ~ - —
niw=0"' P

In other words, we weight observations by inverse propensity.



The IPW estimator

In reality, individuals have different propensity scores e(X,) based on their
features.
The preceding discussion leads to the inverse propensity weighting (IPW)

estimator, which involves two steps:

1. Estimate propensity scores. Fit a model &(X,) to predict treatment from
features (e.g., logistic regression of W on X.)
2. Weight by inverse propensity. Compute:

Y, Y,
=1y Ly S
Miw=1eX) Miw=ol-—eéX))

In our example, this yields IPW = —4.926 (recall that the true ATE = =5).
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The overlap assumption
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When the propensity score at X is too low or too high, we see very few
individuals with features X in treatment or control, respectively.

Further, since we divide by é(X;) and 1 — é(X,), the IPW estimator will be highly
sensitive to observations that have extremely high or very low é(X,), leading to
high variance.

Thus we impose the overlap assumption: propensities are neither too small or
too large, i.e., in the population of interest, for all X, there is a bound § > 0 such

that:
06<e(X)<1-56.



Diagnostic criteria [«]

In practice, since we only have access to estimated propensity scores, and we
can't verify unconfoundedness, the following two diagnostic criteria are used to
evaluate whether overlap is reasonable:
1. Histogram overlap: Plot histograms of &(X,) for treated and control groups.
The distributions should overlap substantially. If they don't, we have poor
overlap and IPW will be unreliable.

2. Covariate balance: After applying IPW weights, check that the weighted
distributions of covariates are similar between treated and control groups.
This verifies the reweighting is working — if successful, weighted groups
should look similar in terms of features.

See R Markdown notebook for these diagnostics in our example.
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Double robustness and the AIPW estimator



Estimators and challenges
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We have seen two approaches to estimation of ATE in the presence of many
covariates:

P The T-learner directly tries to model treatment and control outcomes
respectively as i;(X) and fiy(X), but the resulting estimate of ATE will be
biased if the models are misspecified.

P> The IPW estimator “reconstructs” treatment and control groups through
inverse propensity weighting, via estimated propensity scores é(X); of
course, it will also be biased if é(X) is misspecified.

P> The T-learner can have high variance because it is learning two separate
models; while the IPW estimator can have high variance if propensities are
small.

Amazingly, we can combine them and end up with an estimator that has low bias
and low variance!



The AIPW estimator

The augmented inverse propensity weighting (AIPW) estimator is:

— 1 i’ R R
AIPW = = [Ml(xi) — fo(X;)
=
Y, - X) Y, — f1p(X,)

’ o, —ax) |

itW;=1 i:W;=0
P> First term: Outcome regression estimate fi;(X;) — Ay(X;) (like T-learner)

P Second term: IPW-weighted residuals that correct for outcome model
misspecification
The “augmentation” term uses IPW to fix errors in the outcome models.
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The double robustness property

Why does the AIPW estimator perform so well?

It has a remarkable property known as double robustness:

P> Suppose the outcome models fo(X;) and f,(X;) are nearly unbiased. Then
the residuals will be small = propensity scores don't need to be
unbiased.

P> Suppose the propensity scores are nearly unbiased. Then the IPW terms will
accurately “correct” any bias in the corresponding outcome model
difference 4,(X;) — fip(X;) to obtain a nearly unbiased CATE at X;.

In other words, the AIPW estimator successfully combines both approaches to
yield an estimator that is robust to misspecification of either of the two models
(hence "double” robustness).
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Overfitting
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When using flexible ML methods for é(X), fiy(X), and j,(X), we face a
fundamental problem we have seen before:

Using the same data to both fit the models AND evaluate the final causal
estimate can lead to overfitting bias.
Why is this a problem?

P> When we use predictions from fitted models on the same data they were
trained on, they may be overoptimistic.

P> l.e., the propensity scores é(X;) and outcome predictions fiy(X,), fi; X,) will
be systematically biased.
P> This bias propagates directly into our ATE estimates.

P> Further, any standard error estimates will be too low, and confidence
intervals will be too narrow, due to overoptimism.



Cross-fitting via sample splitting

Cross-fitting via sample splitting implements the ML principle of separating
training and evaluation data:

1. Split data into K folds (e.g., K =2 or K =5).

2. Foreachfoldk=1,...,K:

(i) Fit propensity model é(X) and outcome models fi,(X), ,(X) on all other folds
(folds # k)
(i) Use the resulting trained models to make predictions on fold k only
(iii) Compute AIPW summand (i) for each unit i in fold k, using the predictions
from step (ii)

3. Average the fold-specific estimates: mCF = % > T0)
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Cross-fitting via sample splitting: Notes

P> When fitting models in step (i), all steps needed to yield a fitted model must
be carried out, including parameter tuning (e.g., using cross-validation).
During this process, only data from folds # k should be used.

P> In step (iii), ['(i) is the summand from the definition of AIPW:

WX — (X)) (=W = fg(Xy)
eX;) 1 —éX)) ’

L6) = (X)) — apX) +

where the models in the previous equation are computed using all the data
except the fold k that contains unit i.
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Standard errors and confidence intervals

AIPW also allows for a very simple variance estimator:
2 1 - —
SEnpw = - > (C(0) = APW)?.
i=1

It can be shown that as long as the outcome model and propensity model are
“reasonable”, then a central limit theorem holds, i.e., for large n, AIPW:

P> is asymptotically normal;

P centered at a mean that is the true ATE; and

P> has standard error approximately §I\EA|PW estimated as above.
(See appendix.)
These facts mean we can build confidence intervals and run hypothesis tests on
AIPW, exactly as discussed earlier in the course.
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AIPW for randomized experiments
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Note that in a randomized experiment, we know the treatment probability by
design. This fact makes it easy to use AIPW for experiments:

If treatment was assigned with probability ¢ to all units, we simply use é(X,) = ¢
for all i in the AIPW estimator.

Why use AIPW for experiments?
P> We can leverage flexible modern ML models for outcome prediction /,70()?)
and fi;(X) to capture complex relationships.
P> Double robustness ensures consistent estimation (vanishing bias) of ATE
even if outcome models are misspecified (since propensities are known
exactly).

P> Further, AIPW addresses the drawbacks of the T-learner to yield low
variance estimation; and allows us to estimate standard errors and

confidence intervals for inference.



Simulation example



Comparing IPW and T-learner to AIPW

We simulate a high-dimensional confounded setting to compare finite-sample
performance:
Data generating process:

} n = 300 observations, p = 300 covariates, s = 20 active features

P> First s covariates affect both propensity and outcome (confounding)

P Outcome coefficients: Byl t sl ~ Unif(1,3) x {1}

P> Propensity coefficients: g,[1 : s] ~ Unif(0.5, 1.5) x {+1}

P True ATE = 2.0, noise 6 = 1.5
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Comparing IPW and T-learner to AIPW

Estimation: For each of 200 simulated datasets, we estimate ATE using:
P T-Learner with separate Lasso outcome models
P> IPW with sparse logistic regression propensity scores (lasso)
P AIPW combining both, with 5-fold cross-fitting
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Simulation results: AIPW dominates

Sampling Distributions of Treatment Effect Estimators
Comparing IPW, T-Learner (Lasso), and AIPW under High-Dimensional Confounding

0.5

0.1

0.0

Estimated ATE

Estimator I:l AIPW D PW D T_Learner
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Summary



Key points
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Observational causal inference requires unconfoundedness given your features
— an assumption you can't verify, except through qualitative argument and
domain knowledge.

But if unconfoundedness and overlap hold, AIPW is a remarkably powerful tool
to estimate causal effects:

P> Estimate outcomes and propensities using modern ML techniques.

P Combine them into a low bias, low variance estimator of ATE.

P Obtain valid standard errors and confidence intervals, to enable inference.



Appendix: Asymptotic normality of AIPW []



Preliminaries [x]

Let WVCF denote the cross-fitted AIPW estimator, and let é(X), ﬁo()?), and
4,(X) denote the estimated propensity and outcome models.

We will need some notation:

P For a function A(X), we write Ihllpy =1/ E[A(X)2], where the expectation is
over the distribution of covariates. (This is called the L, norm of the
function, with respect to the covariate distribution.)

P> Asequence of random variables Z, is 0,(1/4/n) if Z,1/n — 0 in probability as
n — oo. In other words, Z, — 0 “faster” than l/ﬁ.
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The central limit theorem [x]

Theorem. Suppose unconfoundedness and overlap hold. In addition, suppose
the following conditions hold:

1. Bounded moments: E[Y%(0)] and E[Y%(1)] are finite.
2. Convergence rates: For both w =0 and w = 1, the product of the RMSEs of
the outcome models and the propensity model is op(l/\/ﬁ):

”/2,/0 - ﬂwllp’z X ”é — e”P,Z = op(n_l/Z)
Then mCF is asymptotically normal: \/Z(mCF — ATE) 4 N(0, O',zAIPW)'
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Remarks on the theorem [x]
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>

>

>

The models f, fi;, and é are random, because they depend on the
realization of the training data; the convergence in probability is over this
randomness.

Consistency (i.e., convergence to the true ATE) only requires one of the two
models to be correct (double robustness); the preceding CLT requires both
to converge fast enough.

However, the key gain in this result is that neither outcome nor propensity
models need to converge at the 1/4/n parametric rate, to still obtain a valid
CLT.

The theorem assumes cross-fitting is used. This ensures the models i, fi;, ¢
are independent of the data used to estimate I'(i), avoiding "overfitting
bias.”

Variance estimation: The sample variance estimator is consistent:

R PRy
= 3 (06) - AIPWep)? 5 02 o
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