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From causal inference to decisions



Causal inference

In causal inference, we focused on methods to estimate the average treatment
effect (ATE):

ATE = 𝔼[𝑌 (1)] − 𝔼[𝑌 (0)]
We studied a range of methods to construct an estimator ÂTE, both from
experiments, and from observational data.
We also studied frequentist approaches to quantify our uncertainty: under
appropriate assumptions, ÂTE has a sampling distribution that is asymptotically
normal, with a standard error ŜE that we can estimate from data (which can be
used to construct a confidence interval for ATE).
Question: How do we use ÂTE to support decisions?
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Example: Online learning platform

Suppose a new online learning platform considers redesigning course
descriptions to be less technical and more accessible (the “treatment”).
The platform runs an experiment to measure the causal effect of treatment on
the course enrollment rate (fraction of visitors who enroll).
The experiment randomizes a subset of courses to treatment (new descriptions)
or control (old descriptions), and the resulting data is used to calculate ÂTE
(e.g., using difference-in-means, or an AIPW approach) with associated ŜE.

The resulting 95% confidence interval is [ÂTE − 1.96ŜE, ÂTE + 1.96ŜE].
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The decision problem

Question: Should we roll out the new descriptions to all courses?
Need to consider:
▶ “Uncertainty” in the treatment effect
▶ Implementation costs (e.g., designer time, development resources)
▶ Potential risks (e.g., might confuse existing users)
Does the 95% confidence interval address these considerations?
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Limitations of frequentist inference for decisions

A 95% confidence interval [ÂTE − 1.96ŜE, ÂTE + 1.96ŜE] tells us:
In 95% of “parallel universes” (frequentist repetition), the true ATE is

in this interval.
A key challenge is that making the decision requires understanding uncertainty
around this single decision — not over many repetitions.
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Limitations of frequentist inference for decisions

Note that in frequentist inference, ATE is not random; so a confidence interval
cannot answer the following types of questions:
▶ What is the “probability” that ATE > 0? (That the effect is positive?)
▶ What is the “probability” that ATE > 𝑐? (That the benefit exceeds cost 𝑐?)
▶ What is the “expected” benefit 𝔼ATE[ATE − 𝑐]?
▶ How should we measure risk due to uncertainty in the ATE?
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The Bayesian approach

The preceding discussion suggests we need two ingredients that are missing in
frequentist inference:
1. A probability distribution over the treatment effect (not just a confidence

interval)
2. Some way to combine this distribution with costs/benefits/risks to make

optimal decisions
The Bayesian framework for statistical inference and decision-making provides
these ingredients.
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The Bayesian approach: Inference and decisions
Bayesian statistical inference:
▶ Treat parameters (e.g., the treatment effect ATE) as random
▶ Before experiment, model initial uncertainty over ATE via a prior distribution
▶ Combine prior with data from experiment to express uncertainty over ATE

as a posterior distribution

Bayesian decision theory:
▶ Formalize costs and benefits via utilities (or loss functions)
▶ Compute expected utility (or expected loss) under the posterior
▶ Optimal decisions: Choose decision that maximizes expected utility, or

minimizes expected loss (Bayes risk)
In the subsequent sections we develop these components, and combine them
to show how a Bayesian approach supports a coherent approach to
decision-making.
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Bayesian inference



Frequentist vs. Bayesian statistical inference
Frequentist approach:
▶ Parameters are fixed (deterministic)
▶ Data sample is random (drawn from population)
▶ Estimator uses sample to estimate parameter(s)
▶ Uncertainty quantified through sampling distribution of estimator:

Repeat data sampling and estimation procedure (“parallel universes”)

Bayesian approach:
▶ Parameters are random
▶ Start with a prior distribution on parameters (before seeing data)
▶ Use Bayes’ theorem to combine prior with data → posterior distribution
▶ Uncertainty quantified through the posterior distribution
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Bayes’ theorem
Let’s start with a simple setup with one parameter, continuous outcomes, and no
covariates:
▶ Parameter 𝜃
▶ Data sample 𝐘 = (𝑌1, … , 𝑌𝑛) (independent samples from population)
▶ Prior distribution on 𝜃: ℎ(𝜃) (pdf or pmf)
▶ Likelihood: 𝑓(𝐘|𝜃) (distribution of data given 𝜃)

Bayes’ theorem:
ℎ(𝜃|𝐘) = 𝑓(𝐘|𝜃)ℎ(𝜃)

𝑓(𝐘) ,

where 𝑓(𝐘) = ∫ 𝑓(𝐘| ̃𝜃)𝑓 ( ̃𝜃)𝑑 ̃𝜃. (If 𝜃 is discrete, then this is a sum against the pmf,
instead of an integral against the pdf.)
The posterior 𝑓(𝜃|𝐘) is the distribution of 𝜃 after we have seen the data sample.
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Bayes’ theorem: In words

Bayes’ theorem can be interpreted as follows:

posterior on 𝜃 ∝ (likelihood of data given 𝜃) × (prior on 𝜃).

Here “∝” means “proportional to” — with constant of proportionality 1/𝑓(𝐘).
Note that the constant 1/𝑓(𝐘) does not depend on 𝜃; so to find the posterior,
it suffices to compute likelihood × prior, then normalize (so the result is a
probability distribution).
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Example 1: Binary outcomes

Suppose we flip a coin 5 times, with unknown success probability 𝑞 (probability
of heads).
Suppose we observe: 𝐻, 𝐻, 𝑇 , 𝐻, 𝑇 . What can we say about 𝑞?
Bayesian approach:
1. Start with a prior for 𝑞: ℎ(𝑞)
2. Compute the likelihood: ℙ(𝐘|𝑞) = 𝑞3(1 − 𝑞)2

3. Apply Bayes’ rule to get the posterior:

ℎ(𝑞|𝐘) = ℙ(𝐘|𝑞)ℎ(𝑞)
∫1

0 ℙ(𝐘|𝑞′)ℎ(𝑞′)𝑑𝑞′
.
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Example 1: Binary outcomes

As an example, suppose that ℎ(𝑞) was the uniform distribution on [0, 1].
Then we can show that the posterior after 𝑛 flips with 𝑘 𝐻 ’s and 𝑛 − 𝑘 𝑇 ’s is:

ℎ(𝑞|𝐘) = 1
𝐵(𝑘 + 1, 𝑛 − 𝑘 + 1)𝑞𝑘(1 − 𝑞)𝑛−𝑘,

the Β(𝑘 + 1, 𝑛 − 𝑘 + 1) distribution.
(Here 𝐵(⋅) is the beta function.)
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Example 1: Binary outcomes

More generally, suppose the prior is 𝑞 ∼ Β(𝑎, 𝑏).
Then we can show that after 𝑛 flips with 𝑘 heads and 𝑛 − 𝑘 tails, the posterior is:

𝑞|𝐘 ∼ Β(𝑎 + 𝑘, 𝑏 + 𝑛 − 𝑘).

We say the Beta distribution is conjugate to binomially distributed data (binary
outcomes):
▶ The prior and posterior are in the same “family” (both Beta)
▶ Simple prior to posterior update rule: Add observed counts to prior

parameters
Note: The uniform prior is the special case Β(1, 1).
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Example 2: Normal data with normal prior

Suppose 𝑌1, … , 𝑌𝑛 are independent 𝒩 (𝜇, 𝜎2), where 𝜎2 is known.
Suppose the prior is: 𝜇 ∼ 𝒩 (𝑎, 𝑏2).
Then we can show that the posterior is also normal: 𝜇|𝐘 ∼ 𝒩 ( ̂𝑎, ̂𝑏2), where

̂𝑎 = 𝑐𝑛𝑌 + (1 − 𝑐𝑛)𝑎

𝑏̂2 = 1
𝑛/𝜎2 + 1/𝑏2

𝑐𝑛 = 𝑛/𝜎2

𝑛/𝜎2 + 1/𝑏2
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Example 2: Normal data with normal prior

The posterior is 𝜇|𝐘 ∼ 𝒩 ( ̂𝑎, 𝑏̂2), where

̂𝑎 = 𝑐𝑛𝑌 + (1 − 𝑐𝑛)𝑎

𝑏̂2 = 1
𝑛/𝜎2 + 1/𝑏2

𝑐𝑛 = 𝑛/𝜎2

𝑛/𝜎2 + 1/𝑏2

In other words, the posterior mean is a weighted average of sample mean 𝑌 and
prior mean 𝑎.
▶ As 𝑛 → ∞, 𝑐𝑛 → 1: data dominates, ̂𝑎 → 𝑌
▶ As 𝑏 → ∞ (weak prior), 𝑐𝑛 → 1: data dominates
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Example 3: Posterior for ATE
Suppose after an experiment, using observed data 𝐘 = (𝑌1, … , 𝑌𝑛) and
assignments𝐖 = (𝑊1, … , 𝑊𝑛), we compute ÂTE and its associated standard
error ŜE.
Likelihood: For large 𝑛, by the Central Limit Theorem, the sampling distribution
of ÂTE ≈ 𝒩 (ATE, ŜE2

).
Prior: Suppose we assume that ATE ∼ 𝒩 (𝜇0, 𝜎2

0). (Later we’ll discuss how one
might obtain such a prior.)
Posterior: By a similar approach as the previous slide, we can show that
ATE|data ≈ 𝒩 (𝜇𝑛, 𝜎2

𝑛), where:

𝜇𝑛 = 𝑐𝑛ÂTE + (1 − 𝑐𝑛)𝜇0; 𝜎2
𝑛 = 1

1/ŜE2
+ 1/𝜎2

0

; 𝑐𝑛 = 1/ŜE2

1/ŜE2
+ 1/𝜎2

0

17/67



Using the posterior for inference

Recall the two main goals of inference:
1. How do we estimate the parameter?
2. How do we quantify uncertainty?

Bayesian inference answers both questions through the posterior distribution.
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Estimation

The posterior can be used to compute various estimators:
▶ Posterior mean: 𝔼𝜃[𝜃|data]
▶ Posterior median: median(𝜃|data)
▶ Posterior mode: The value of 𝜃 that maximizes 𝑓(𝜃|data) (also called the

maximum a posteriori orMAP estimate)
(As we have shown earlier in the class, the posterior mean is the estimate that
minimizes expected squared error under the posterior; and the posterior
median is the estimate that minimizes expected absolute error under the
posterior.)
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Quantifying uncertainty: Credible intervals

A 1 − 𝛼 credible interval is an interval [𝐿, 𝑈] such that:

ℙ𝜃(𝐿 ≤ 𝜃 ≤ 𝑈|𝐘) ≥ 1 − 𝛼.

Comparison to (frequentist) confidence intervals:
▶ Confidence interval: Endpoints [𝐿, 𝑈] are random, parameter 𝜃 is fixed
▶ Credible interval: Endpoints [𝐿, 𝑈] are fixed, parameter 𝜃 is random
▶ A credible interval is a direct probabilistic statement about 𝜃.

Example: For a normal posterior 𝒩 ( ̂𝑎, 𝑏̂2), a 95% credible interval is:

[ ̂𝑎 − 1.96𝑏̂, ̂𝑎 + 1.96𝑏̂].
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Quantifying uncertainty: Taking advantage of the posterior

Because the posterior is a full probability distribution, we can do far more than
just compute credible intervals.
We can answer far richer probabilistic questions about parameters, for example:

▶ “What is ℙ𝜃(𝜃 > 0|data)?”
▶ “What is the 90th percentile of the posterior on 𝜃 given the data?”
▶ If there are multiple parameters, e.g., 𝜃1, 𝜃2, we can ask questions that

involve their joint posterior: e.g., “What is ℙ𝜃(𝜃1 > 𝜃2|data)?”

In Bayesian inference, you should not limit yourself to just simple estimates and
credible intervals; interrogation of the full posterior distribution is quite valuable
and often yields significant insight.
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Example: Bayesian causal inference

Recall earlier example of experiment with normal prior on ATE.
Posterior is ATE|data ∼ 𝒩 (𝜇𝑛, 𝜎2

𝑛).
Estimation from posterior: Mean = median = mode (MAP) = 𝜇𝑛.
95% credible interval: [𝜇𝑛 − 1.96𝜎𝑛, 𝜇𝑛 + 1.96𝜎𝑛].
Probability effect is positive:

ℙATE(ATE > 0|data) = 1 − Φ (−𝜇𝑛
𝜎𝑛 ) ,

where Φ is the standard normal CDF.
This approach to causal inference is called Bayesian causal inference.
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Comparing Bayesian and frequentist inference



MAP estimation compared to MLE

Recall: posterior ∝ likelihood × prior.
If the prior is flat (uniform), then:

arg max
𝜃

𝑓(𝜃|𝐘) = arg max
𝜃

𝑓(𝐘|𝜃).

(Note: arg max means “the 𝜃 that achieves the maximum value.”)
Therefore, in this case: The MAP estimate (posterior mode) equals the MLE.
In general, a non-uniform prior will “shift” the MAP away from the MLE, and
towards the prior mode.
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Example: Binary outcomes revisited

Recall: Β(𝑎, 𝑏) prior with 𝑘 𝐻 ’s, 𝑛 − 𝑘 𝑇 ’s ⟹ Β(𝑎 + 𝑘, 𝑏 + 𝑛 − 𝑘) posterior.
The posterior mode (MAP) is MAP = 𝑎+𝑘−1

𝑎+𝑏+𝑛−2 .

This can be written as:

MAP = 𝑐𝑛 ⋅MLE + (1 − 𝑐𝑛) ⋅ (prior mode),

where MLE = 𝑘/𝑛, prior mode = (𝑎 − 1)/(𝑎 + 𝑏 − 2), and 𝑐𝑛 = 𝑛/(𝑎 + 𝑏 + 𝑛 − 2).
Observe that for large 𝑛, 𝑐𝑛 ≈ 1, so MAP ≈ MLE.
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Example: Normal data revisited

Recall: Normal prior with normal data ⟹ Normal posterior with mean

̂𝑎 = 𝑐𝑛𝑌 + (1 − 𝑐𝑛)𝑎.

Here 𝑌 is the MLE, 𝑎 is the prior mean.
For large 𝑛: 𝑐𝑛 ≈ 1, so ̂𝑎 ≈ 𝑌 (the MLE).
(Also for large 𝑛: ̂𝑏2 ≈ 𝜎2/𝑛 = SE2, the variance of the MLE.)
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Example: Bayesian linear regression and regularization

In the appendix, we develop a Bayesian approach to linear regression: we put a
prior on the coefficients 𝜷, then combine with the data to estimate a posterior
distribution.
We show that if (A1)-(A4) hold, then for appropriate choices of prior that put
high weight on coefficients being zero, we obtain ridge regression and lasso as
the resulting MAP coefficient estimates!
This behavior is similar to the preceding examples: here Bayesian estimation
“shrinks” the MAP estimated coefficients towards zero (the prior mode), and
away from the OLS solution (the MLE under (A1)-(A4)).

26/67



Large sample behavior

The previous observations are more general. In fact, for “reasonable” priors,
when the sample size 𝑛 grows large, the posterior becomes asymptotically
normal, with:
▶ Posterior mean/mode ≈ MLE
▶ Posterior variance ≈ ̂SE2 (variance of the MLE)
In other words, when data is sufficient, the prior no longer plays a significant
role, so Bayesian and frequentist parameter estimates become similar.
Warning: Despite this superficial similarity, note that regardless of the sample
size, there is no frequentist analog of the Bayesian posterior! (Parameters are
not random for frequentists.)
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When do Bayesian methods work well?

Bayesian methods work well when prior information matters.
Example: Suppose we run a small A/B test of a new website feature.
▶ In hundreds of previous A/B tests, the typical increase in conversion rate

was 1-2%.
▶ In this small test, we observe a 15% increase in conversion rate.
▶ The frequentist would estimate ÂTE = 15%.
▶ But the Bayesian posterior would “shrink” the estimate toward 1-2%, the

historical average.
Here being Bayesian “protects” against overconfident extrapolation from a
single, small experiment.
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When do Bayesian methods work poorly?

Bayesian methods work poorly when the prior is not well matched to reality.
Example: Suppose we test a new promotion to attract customers.
▶ If previous promotions failed spectacularly, we will necessarily have a

pessimistic prior (low prior probability of a positive ATE).
▶ But if the new promotion is actually successful, our strong pessimistic prior

makes us less likely to detect the success.
This is a fundamental tradeoff: the stronger the prior, the greater the protection
against mistaken overconfidence; but the greater the risk of missing true, novel
effects.
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Comparing approaches

Frequentist strengths:
▶ Uses only the data for inferences: e.g., confidence intervals and 𝑝-values are

“objective” summaries that depend only on the data
▶ Guarantees on performance of statistical procedures under repetition

Bayesian strengths:
▶ Leverages available prior information effectively
▶ Combines prior and data into single distribution (posterior)
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Combining methods

In practice, it is often valuable to:
▶ Ask that Bayesian methods have good frequentist properties
▶ Ask that frequentist estimates “make sense” given prior understanding

Having both approaches in your toolkit is useful for this reason.
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Data-driven priors: Empirical Bayes



Where does the prior come from?

A key question: How do we choose the prior ℎ(𝜃)?
Two traditional schools of thought:
▶ Subjective Bayesian: Prior encodes subjective beliefs

▶ Example: If flipping a fair coin, prior should be strongly concentrated around
𝑞 = 0.5

▶ Objective Bayesian: Prior should be “uninformative”
▶ Example: “Flat” or uniform prior
▶ See appendix for more on objective priors

In practice, both approaches have challenges:
▶ Subjective priors: Hard to defend, especially in science/policy
▶ Objective priors: Often not truly “uninformative”; can be overly conservative
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Empirical Bayes

Empirical Bayes: Estimate the prior from related data.
Key idea:
▶ Use historical information: previous experiments; related data scientific

studies; meta-analyses; etc.
▶ Estimate prior from this historical data
▶ Results in priors that are data-driven
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Empirical Bayes

Example: For treatment effect ATE on a new experiment:
▶ Collect data from 𝑚 previous experiments on similar interventions
▶ Observed treatment effects: ÂTE1, … , ÂTE𝑚
▶ Estimate prior: ATE ∼ 𝒩 ( ̂𝑎, 𝑏̂2), where ̂𝑎 is sample mean and 𝑏̂2 is sample

variance of ÂTE1, … , ÂTE𝑚
1

1In practice, an important but subtle issue is that the resulting 𝑏̂2 may be too large (i.e., the
resulting prior is too “diffuse”), because 𝑏̂2 also uncertainty due to finite sample sizes in each
experiment. This can be corrected by reducing the prior variance lower than 𝑏̂2 in a data-driven
manner (beyond the scope of this lecture).
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Example: Empirical Bayes for course descriptions

Suppose our online learning platform has run many previous A/B tests:
▶ User interface changes, email campaigns, recommendation tweaks, etc.
▶ For each: Suppose we estimated ÂTE𝑚 — effect on enrollment rate

The empirical Bayes approach constructs a prior from this previous
experimental data.
Note that we might want to weight some experiments more heavily in this prior
construction: e.g., those that specifically focused on changes to course
descriptions.
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Benefits of empirical Bayes

Empirical Bayes has several key features:

1. Objectivity: It is relatively objective, in the sense that the prior is grounded
in historical data and observed outcomes.

2. Shrinkage: Posterior estimates are “pulled” towards the prior mean or mode
(“shrunk” towards the historical norm), with a strength that depends on the
sample size.

3. Flexibility: The prior distribution can be quite complex/flexible, both to
better match historical data, and to select historical experiments that are
most relevant to the current experiment.
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The winner’s curse [∗]

The “shrinkage” effect of empirical Bayes directly addresses a key issue in
experimentation, known as the “winner’s curse”:
Suppose we run an experiment comparing multiple variations of a web page. If
we pick the “best” based on the observed estimated effects, we will have
overestimated the true ATE of the “winner” on average.
(This is a similar effect seen in prediction: the validation set error of the winning
model underestimates that model’s true generalization error.)
Empirical Bayes shrink all estimates toward the historical mean, but in particular,
the “winner” gets shrunk themost (because it is further from the historical mean).
This has the consequence of mitigating the “winner’s curse” bias.
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Decisions



From inference to decisions

Recall our course platform that ran an experiment with new course descriptions.
Using the previous sections, we can construct a posterior for ATE (the
enrollment rate per course).
Should we roll out the new course descriptions? This isn’t just inference; it’s a
decision.
Need to simultaneously consider:
▶ Benefits
▶ Costs
▶ Uncertainty about the true ATE
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Example: Course description rollout decision

To be concrete, consider the following situation:
▶ 𝐾 = 1000 courses
▶ ATE represents additional enrollment rate, i.e., expected additional

enrollments per course
▶ Suppose that experiment produces ÂTE = 0.02, and ŜE = 0.015.
▶ Note significant uncertainty: 95% frequentist confidence interval is

≈[−0.01, 0.05], which includes zero ⟹ do not reject the null hypothesis
𝐻0 ∶ ATE = 0.
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Example: Course description rollout decision

Let’s translate this to a Bayesian decision problem:
▶ Posterior from experiment: ATE|data ∼ 𝒩 (0.02, 0.0152)
▶ Suppose revenue from each enrollment: $400
▶ Suppose implementation cost platform-wide: 𝐶 = $5000
▶ Decision: Roll out or not?
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Formalizing the decision

Decisions: roll out, or don’t roll out, new course descriptions platform-wide
Unknown parameter: True effect ATE
Consequences: Financial outcomes that depend on action and true ATE
Utilities:

𝑢(roll out,ATE) = 𝐾 ⋅ ATE ⋅ 400 − 𝐶 (gain 𝐾 ⋅ ATE ⋅ 400, pay cost 𝐶)
𝑢(don’t roll out,ATE) = 0 (no benefit, no cost)
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The decision rule
Since ATE is uncertain, evaluate each action by its expected utility under the
posterior.
Expected utility of rolling out:

𝔼ATE[𝑢(roll out,ATE) ∣ data] = 𝔼ATE[𝐾 ⋅ ATE ⋅ 400 − 𝐶 ∣ data]
= 𝐾 ⋅ 𝔼ATE[ATE ∣ data] ⋅ 400 − 𝐶
= 1000 × 0.02 × 400 − 5000 = $3000

Expected utility of not rolling out:

𝔼ATE[𝑢(don’t rollout,ATE) ∣ data] = 0

Decision: Choose action maximizing expected utility ⟹ roll out.
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Why expected utility? [∗]

Under reasonable axioms, it can be shown that expected utility maximization is
the coherent way to make decisions under uncertainty.
Formal foundation: Von Neumann-Morgenstern axioms (see appendix).
▶ Basic rationality requirements on preferences: completeness, transitivity,

continuity, independence
▶ These imply preferences can be represented by maximizing expected utility

We won’t derive the axioms here, but this provides the normative justification for
expected utility maximization.
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General Bayesian decision framework
Now abstract from the example:
Elements:
▶ Actions: 𝑎 ∈ 𝒜
▶ Unknown parameter: 𝜃
▶ Utility: 𝑢(𝑎, 𝜃) (or loss 𝐿(𝑎, 𝜃) = −𝑢(𝑎, 𝜃))
▶ Posterior: ℎ(𝜃 ∣ data)

Bayes-optimal decision:

𝑑∗ = arg max
𝑑

𝔼𝜃[𝑢(𝑑, 𝜃) ∣ data]

= arg min
𝑑

𝔼𝜃[𝐿(𝑑, 𝜃) ∣ data]

The expected loss 𝔼𝜃[𝐿(𝑑, 𝜃)|data] is called the Bayes risk.
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Incorporating risk aversion

Our simple decision rule: roll out if 𝔼ATE[ATE|data] is large relative to cost ratio.
But this ignores risk: Large uncertainty 𝜎𝑛 should make us more cautious...
Approaches to incorporate risk:
1. Use a nonlinear utility function: a concave 𝑢(𝑥), e.g., 𝑢(𝑥) = √𝑥, will make the

decision maker risk averse
2. Add a penalty for variance: 𝔼𝜃[𝑢(𝑑, 𝜃)|data] − 𝜆 Var𝜃(𝑢(𝑑, 𝜃)|data)
3. Require higher confidence: roll out only if ℙATE(ATE > 𝐶/𝑁|data) > 0.95
The first of these is the usual way to incorporate risk aversion in a
decision-theoretic framework; the second and third do not strictly correspond to
expected utility maximization, but can be useful practical heuristics.
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Comparison to frequentist approach

In industrial practice, it is common to rely on frequentist hypothesis testing to
make decisions:
▶ Test 𝐻0 ∶ ATE = 0 vs. 𝐻1 ∶ ATE ≠ 0
▶ Reject 𝐻0 if p-value < 𝛼 (e.g., 𝛼 = 0.05)
▶ If 𝐻0 rejected and ÂTE is positive, roll out; otherwise, do not roll out
But this approach has many limitations:
▶ Ignores prior (historical) knowledge
▶ Does not incorporate costs or benefits, and ignores uncertainty in the

magnitude of the effect
▶ Choice of 𝛼 not explicitly related to risk preferences
All of these issues are coherently addressed in a Bayesian decision-making
framework.
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Complete Bayesian decision-making workflow

1. Prior: Use empirical Bayes (historical experiments) to obtain prior
ATE ∼ 𝒩 (𝜇0, 𝜎2

0)
2. Experiment: Run A/B test, obtain ÂTE and ŜE
3. Posterior: Compute ATE|data ∼ 𝒩 (𝜇𝑛, 𝜎2

𝑛)
4. Decision: Compute expected utilities, choose decision that maximizes

expected utility
Additional (advanced) steps can include sensitivity analysis (checking robustness
of the decision to choice of prior), and calculating the value of information (i.e.,
determining whether gathering more data would be worth the cost).
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Computational considerations



Computation: Modern tools

Even simple Bayesian problems can be computationally challenging:
▶ Computing posterior involves integration over the full parameter space,

which can be complex
▶ Conjugate priors are special cases; most problems don’t have closed form

posterior calculations
However, modern computational techniques such as Markov chain Monte Carlo
and generative modeling have meant that computation is no longer a barrier to
Bayesian methodology in most applied domains.
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Markov Chain Monte Carlo (MCMC) [∗]

MCMC is a computational methods for sampling from the posterior:
▶ Generate samples 𝜃1, … , 𝜃𝐵 ∼ 𝑓(𝜃|data)
▶ Use samples to approximate posterior mean, credible intervals, etc.
▶ Conceptual idea: construct a Markov chain whose stationary distribution is

the posterior
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Modern generative models [∗]

More recent advances in AI models have also had significant impact on Bayesian
inference.
▶ Generative AI models can be used to sample from complex posteriors,

without explicit distributional representation
▶ Examples: diffusion models, neural samplers
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Appendix: Bayesian linear regression [∗]



Bayesian linear regression [∗]

For simplicity, assume that (A1)-(A4) hold: 𝑌𝑖 = 𝐗𝑖𝜷 + 𝜖𝑖, where 𝜖𝑖 ∼ 𝒩 (0, 𝜎2).
In Bayesian linear regression, we also assume a prior distribution on 𝜷.
As we’ll see, the choice of prior is connected to regularization:
▶ Normal prior ⇒ ridge regression
▶ Laplace prior ⇒ lasso regression
(Technical note: We’ll assume 𝜎2 is known. In practice, we use an estimate 𝜎̂2

from the data.)
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Ridge regression and lasso [∗]

Recall that ridge regression and lasso are regularized regression techniques:
Ridge regression chooses 𝜷̂ to minimize:

𝑛

∑
𝑖=1

(𝑌𝑖 − 𝐗𝑖𝜷)2 + 𝜆
𝑝

∑
𝑗=1

𝛽2
𝑗

Lasso chooses 𝜷̂ to minimize:
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝐗𝑖𝜷)2 + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|
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Ridge regression as Bayesian regression [∗]

Suppose the prior on 𝜷 is:
𝜷 ∼ 𝒩 (0, 1

𝜆𝜎2 𝐈) .

This prior encodes the belief that coefficients should be close to zero, with
strength controlled by 𝜆.
Key result: The MAP estimator (posterior mode) is exactly the ridge regression
solution.
Interpretation: The MAP estimate balances the likelihood (data fit) with the prior
(regularization toward zero). Higher 𝜆 = stronger prior = more “shrinkage” of
coefficients.
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Lasso as Bayesian regression [∗]

Suppose the prior on each 𝛽𝑗 is independent Laplace:

ℎ(𝛽𝑗) = (
𝜆

2𝜎 ) exp (−
𝜆|𝛽𝑗|

𝜎 ) .

The Laplace distribution is symmetric around zero, butmore peaked at zero than
the normal distribution.
Key result: The MAP estimator is exactly the lasso solution.
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Objective Bayesian inference [∗]

Goal: Choose priors that are “uninformative” or “objective”.
Motivation:
▶ Subjectivity should not enter scientific conclusions
▶ Want conclusions driven by data, not prior beliefs

Approaches:
▶ Flat (uniform) priors
▶ Improper priors
▶ Jeffreys’ priors (transformation-invariant)

55/67



Flat priors [∗]

A flat prior is uniform over the parameter space: 𝑓(𝜃) = 𝑐 (constant).
Example: For coin bias 𝑞 ∈ [0, 1], flat prior is 𝑓(𝑞) = 1 (uniform on [0, 1]).
When the prior is flat:

posterior ∝ likelihood × constant ∝ likelihood.

So the MAP estimate equals the MLE!
Problem: What if the parameter space is unbounded (e.g., 𝜃 ∈ ℝ)?
▶ A flat prior 𝑓(𝜃) = 𝑐 cannot be a probability distribution
▶ But we might still be able to define a posterior…
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Improper priors [∗]
An improper prior is a “prior” that is not a valid probability distribution.
Example: 𝑌1, … , 𝑌𝑛 ∼ 𝒩 (𝜇, 1), with flat prior 𝑓(𝜇) = 1 (constant) on ℝ.
The posterior is:

𝑓(𝜇|𝐘) ∝ 𝑓(𝐘|𝜇)𝑓(𝜇)

∝ exp
(

−1
2

𝑛

∑
𝑖=1

(𝑌𝑖 − 𝜇)2
)

× 1

∝ exp (−𝑛
2(𝜇 − 𝑌 )2

) .

This is proportional to 𝒩 (𝑌 , 1/𝑛), which is a valid distribution!
So even though the prior is improper, the posterior is well-defined.
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Improper priors: Interpretation [∗]

Using a flat improper prior:
▶ Encodes “no information” about 𝜃 before seeing data
▶ Posterior is entirely driven by likelihood
▶ MAP = MLE

Conservative approach:
▶ Most conservative thing is to assume no knowledge except from data
▶ Flat prior is meant to encode this

Caution: Not all improper priors yield well-defined posteriors!
▶ Need to check that posterior can be normalized
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Jeffreys’ priors [∗]
Problem with flat priors: Not invariant to transformations.
Example: If 𝑓(𝜇) = 1 (flat), what is the prior on 𝜇2?

𝑓(𝜇2) = 𝑓(𝜇)
2𝜇 = 1

2𝜇 .

This is not flat!
Jeffreys’ prior: Choose 𝑓(𝜃) ∝ √𝐼(𝜃), where 𝐼(𝜃) is the Fisher information.
Properties:
▶ Transformation-invariant
▶ “Uninformative” in a well-defined sense
▶ See Wasserman, All of Statistics, Section 11.6 for details
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Decisions under uncertainty [∗]

In our decision framework, we choose decisions whose consequences depend
on unknown parameters.
Example from lecture: Should we roll out new course descriptions?
▶ Consequence depends on true ATE (unknown)
▶ Posterior gives us probabilities: ATE ∣ data ∼ 𝒩 (𝜇𝑛, 𝜎2

𝑛)
In this appendix, we frame such choices in the language of decision theory, and
use this framing to motivate expected utility maximization as optimal
decision-making.
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Decisions under uncertainty [∗]

General setting: A lottery 𝐿 specifies probabilities over possible outcomes.
▶ Outcomes represent possible “states of the world”, i.e., actual ground truth.
▶ A lottery represents probability distributions over outcomes. Note that the

base (deterministic) outcomes are also representable as “lotteries” – they are
probability distributions that put probability 1 on a deterministic outcome.

▶ A decision maker has preferences over lotteries, represented by ≻. In
particular, 𝐿1 ≻ 𝐿2 means the lottery 𝐿1 is strictly preferred to the lottery 𝐿2.
(We write 𝐿1 ≿ 𝐿2 if 𝐿1 ≻ 𝐿2, or if the decision-maker is indifferent between
𝐿1 and 𝐿2.)

In our case: Outcomes are determined by the true ATE, as well as any other
associated costs and/or benefits of implementation. The lottery over outcomes
is determined by the posterior, since this gives a distribution over possible
values of ATE.
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“Rational” preferences [∗]

Decision theory imposes constraints of preferences motivated by “rational”
behavior.
Example: Consider preferences over three options 𝐴, 𝐵, 𝐶 (could be lotteries, or
just fixed outcomes).
Suppose your preferences are:
▶ 𝐴 is preferred over 𝐵 (𝐴 ≻ 𝐵)
▶ 𝐵 is preferred over 𝐶 (𝐵 ≻ 𝐶)
▶ 𝐶 is preferred over 𝐴 (𝐶 ≻ 𝐴)
In each case, specifically suppose that the preferred option is greater than $100
more preferred than the less preferred option.

62/67



“Rational” preferences [∗]

These preferences are problematic due to their “circularity.” In particular,
consider the following sequence of trades:
▶ You currently own 𝐴.
▶ I offer to swap 𝐴 for 𝐶 , charging you $100, and you accept.
▶ I offer to swap 𝐶 for 𝐵, charging you $100, and you accept.
▶ I offer to swap 𝐵 for 𝐴, charging you $100, and you accept.
▶ You’re back to 𝐴, but you’ve paid out $300!
Decision theory introduces axiomatic constraints on preferences to ensure
coherence, i.e., to rule out problematic behavior such as sure losses.
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Coherent preferences: The vNM axioms [∗]

Von Neumann and Morgenstern (1944) identified conditions on preferences
that prevent such incoherence in preferences.
Four axioms on preferences ≿ over lotteries:
1. Completeness: For any 𝐿1, 𝐿2: either 𝐿1 ≿ 𝐿2 or 𝐿2 ≿ 𝐿1 (can always

compare)
2. Transitivity: If 𝐿1 ≿ 𝐿2 and 𝐿2 ≿ 𝐿3, then 𝐿1 ≿ 𝐿3 (prevents circularity)
3. Continuity: If 𝐿1 ≿ 𝐿2 ≿ 𝐿3, then there exists 𝑝 (0 ≤ 𝑝 ≤ 1) such that

𝐿2 ∼ 𝑝𝐿1 + (1 − 𝑝)𝐿3
4. Independence: If 𝐿1 ≿ 𝐿2 and 0 ≤ 𝑝 ≤ 1, and 𝐿3 is any lottery, then

𝑝𝐿1 + (1 − 𝑝)𝐿3 ≿ 𝑝𝐿2 + (1 − 𝑝)𝐿3.
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Coherent preferences: The vNM theorem [∗]

Using the preceding axioms, we have the following theorem.
Theorem (vNM): If ≿ satisfies the preceding four axioms, then there exists a utility
function 𝑢 over outcomes 𝑥 such that:

𝐿1 ≿ 𝐿2 ⟺ 𝔼𝐿1[𝑢(𝑥)] ≥ 𝔼𝐿2[𝑢(𝑥)].

In other words Coherent preferences correspond to ranking lotteries by
expected utility (for some corresponding utility function).
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Connection to Bayesian decision making [∗]

In our setting:
▶ We have a posterior ℎ(𝜃 ∣ data) over unknown parameter 𝜃.
▶ Each pair of a possible decision 𝑑 and parameter 𝜃 determines the

outcome.
▶ The posterior gives us probabilities over 𝜃, so each decision 𝑑 corresponds

to a lottery over outcomes.
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Connection to Bayesian decision making [∗]

With the previous setting, the vNM axioms apply:
If our preferences over decisions satisfy the four axioms, then there is a utility
function 𝑢 such that the optimal decisionmaximizes expected utility:

Choose 𝑑∗ = arg max
𝑑

𝔼𝜃[𝑢(𝑑, 𝜃) ∣ data].

This is exactly the Bayesian decision rule we used in the lecture.
In other words, expected utility maximization isn’t just reasonable
qualitatively—in the quantitative sense justified by the vNM axioms, it’s the only
coherent way to make decisions under uncertainty (given the posterior).
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