
MS&E 226: Fundamentals of Data Science
Lecture 2: Introduction to prediction

Ramesh Johari
rjohari@stanford.edu

1/52

Prediction

In this part of the class we focus only on the prediction problem:
Given a sample 𝐗 and 𝐘, construct a fitted model that has low error in predicting
outcomes on the entire population.

This is commonly referred to as the supervised learning problem: our sample consists of feature
vectors and associated outcomes, that we can use to “supervise” the process of finding a good
fitted model for prediction.

2/52

The prediction problem: Formalism

▶ 𝐗,𝐘: Data we are given
▶ 𝑋⃗: Covariate vector of a new data point from the population
▶ 𝑌 : True outcome associated with 𝑋⃗
▶ ̂𝑓 (⋅): Fitted model (input: covariate vector; output: predicted outcome)
Goal: Using 𝐗 and 𝐘, construct ̂𝑓 so that 𝑌 ≈ ̂𝑓 (𝑋⃗).

3/52

The prediction problem: Example

▶ 𝐗,𝐘: 1,728 houses in Saratoga County
▶ 𝑋⃗: Features of a house drawn from the population, e.g., houses in upstate

New York
▶ 𝑌 : True sales price of the house with covariates 𝑋⃗
▶ ̂𝑓 (⋅): E.g., linear regression model fit using 𝐗 and 𝐘
▶ ̂𝑓(𝑋⃗): Predicted price
Goal: Construct ̂𝑓 so that true price ≈ predicted price.

4/52

Classification vs. regression

Two broad classes of prediction problems:
1. Regression: 𝑌 is a continuous variable (numeric). Examples:

▶ Predict wealth given demographic factors
▶ Predict customer spend given profile
▶ Predict earthquake magnitude given seismic characteristics
▶ Predict level of antigen given biological markers

2. Classification: 𝑌 is a categorical variable (factor). Examples:
▶ Is this e-mail spam or not?
▶ What zip code does this handwriting correspond to?
▶ Is this customer going to buy an item or not?
▶ Does this patient have the disease or not?

We focus on regression problems first.

5/52

Prediction error

Measurement of prediction error depends on the type of prediction problem.
For regression, two common examples of prediction error measures include:
▶ Squared error (𝑌 − ̂𝑓 (𝑋⃗))2;
▶ Absolute deviation |𝑌 − ̂𝑓 (𝑋⃗)|.
We focus on squared error for now. (Mainly because it is very widely used, as a
matter of convenience.)

6/52

A “good” fitted model

We start with a basic question:
How do we find a “good” fitted model?

7/52

Idea 1: The sample mean
Since we want small squared error, we could just pick the real number 𝑐 that
makes squared error smallest:

minimize
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑐)2.

Theorem
The number ̂𝑐 that solves the optimization problem above is the sample mean:

̂𝑐 = 𝑌 = 1
𝑛

𝑛

∑
𝑖=1

𝑌𝑖.

Exercise: Prove this.

8/52

Idea 1: The sample mean

> c = mean(sh$price)
> c
[1] 211966.7
> mean((sh$price - c)^2)
[1] 9685099417
> sqrt(mean((sh$price - c)^2))
[1] 98412.9

The second quantity is the RMSE (root mean squared error);
we often use it because it’s in the same units as the original outcome (price).

9/52

Idea 2: Group means

The mean is pretty simplistic, since it doesn’t even use any features!
Why not at least take advantage of grouping in the data, e.g., by heating type?
Group-based predictions (three heating types):
c_hotair (mean for hot air heating): 226355.4
c_hotwater (mean for hot water/steam heating): 209132.5
c_electric (mean for electric heating): 161888.6

10/52

Idea 2: Group means – MSE and RMSE

For each house in our dataset, we make the prediction based on the group
mean (i.e., based on the average price of houses with the same type of heating):
For each 𝑖, define ̂𝑌𝑖 = c_hotair if heating = hot air; etc.
The MSE is:

MSE = 1
𝑛 ∑

𝑖=1
(𝑌𝑖 − ̂𝑌𝑖)2,

and the RMSE is √MSE.
With this formula the RMSE becomes $95429.27.

11/52

Idea 2: Group means

Could also group by “binning” livingArea:
Round livingArea to nearest 200 square feet, then compute group means
within in “bin.”
Now the RMSE (same calculation as previous slide) is $67685.18.

12/52

Complexity...

Obviously these “simple” manual approaches get complicated quickly...
Here’s an idea:
▶ Sample mean minimizes sum of squared errors.
▶ Why not do the same thing, but using more features?
First approach: fit a linear function of the features to predict price.

13/52

Idea 3: Ordinary least squares (OLS) linear regression
Given coefficients ̂𝛽, make the fitted value for the 𝑖’th observation:

̂𝑌𝑖 =
𝑝

∑
𝑗=1

̂𝛽𝑗𝑋𝑖𝑗 .

Or could also add an additional intercept term (constant ̂𝛽0):

̂𝑌𝑖 = 𝛽0 +
𝑝

∑
𝑗=1

̂𝛽𝑗𝑋𝑖𝑗 .

Ordinary least squares (OLS): Choose ̂𝛽 so that:

SSE = sum of squared errors =
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝑌𝑖)2.

(or equivalently, MSE) isminimized. Terminology note: 𝑟𝑖 = 𝑌𝑖 − ̂𝑌𝑖 is also called
the 𝑖’th residual.

14/52

Idea 3: Ordinary least squares (OLS) linear regression

How to interpret the coefficients?
▶ ̂𝛽0 is the fitted value when all the covariates are zero.

▶ ̂𝛽𝑗 is the change in the fitted value for a one unit change in the 𝑗’th covariate,
holding all other covariates constant.

15/52

Existence and uniqueness of OLS solution

OLS always has at least one solution, but the solution may not be unique.
If 𝑛 > 𝑝 and the columns of 𝐗 are linearly independent, there will be a unique
OLS coefficient vector 𝜷̂.
(When the columns of 𝐗 are not linearly independent, we say they are collinear.)
See appendix for more details on the linear algebra of the OLS solution.

16/52

OLS: Example 1

To start, here’s an example using just livingArea and an intercept:
> fm = lm(data = sh, price ~ 1 + livingArea)
> summary(fm)
...
Coefficients:

Estimate ...
(Intercept) 13439.394 ...
livingArea 113.123 ...
...

In other words: price ≈ 13,439.394 + 113.123 × livingArea.
Note: summary(fm) produces lots of other output too! We are going to gradually work in this
course to understand what each of those pieces of output means.

17/52

OLS: Example 1 – Plot

Here is the model plotted against the data:

0e+00

2e+05

4e+05

6e+05

8e+05

1000 2000 3000 4000 5000
livingArea

pr
ic

e

The RMSE is now $69064.56.

> ggplot(data = sh,
aes(x = livingArea,

y = price)) +
geom_point() +
geom_smooth(method="lm",

se=FALSE)

18/52

Comparison to “binned” means
Now let’s try plotting the model again, together
with previously “binned” means of livingArea:

0e+00

2e+05

4e+05

6e+05

8e+05

1000 2000 3000 4000 5000

livingArea

pr
ic

e

We are observing
something that will pop up
repeatedly:
OLS approximates the
conditional average of the
outcome, given the
features.

19/52

OLS: Example 2 – Categorical variables

Let’s see this in action in another case.

> fm = lm(data = sh, price ~ 1 + heating)
> summary(fm)
...
Coefficients:

Estimate ...
(Intercept) 226355 ...
heatinghot water/steam -17223 ...
heatingelectric -64467 ...
...

What do these new variable names mean?

20/52

OLS: Example 2 – Categorical variables

Let’s see this in action in another case.

> fm = lm(data = sh, price ~ 1 + heating)
> summary(fm)
...
Coefficients:

Estimate ...
(Intercept) 226355 ...
heatinghot water/steam -17223 ...
heatingelectric -64467 ...
...

What do these new variable names mean?

20/52

OLS: Example 2 – 1-hot encoding

Effectively, R creates two new binary variables (sometimes called “1-hot”
encoding):
▶ The first is 1 if heating is hot water/steam, and zero otherwise.
▶ The second is 1 if heating is electric, and zero otherwise.
What if they are both zero? Why is there no variable heatinghot air?

21/52

OLS: Example 2 – Interpretation

What do the coefficients mean? Recall that:
c_hotair (mean for hot air heating): 226355.4
c_hotwater (mean for hot water/steam heating): 209132.5
c_electric (mean for electric heating): 161888.6

The intercept (226355) corresponds to the baseline category: hot air heating.
The other coefficients are differences from the baseline:
▶ Hot water/steam: 226355 - 17223 = 209132
▶ Electric: 226355 - 64467 = 161888

22/52

OLS: Example 2 – Interpretation

What do the coefficients mean? Recall that:
c_hotair (mean for hot air heating): 226355.4
c_hotwater (mean for hot water/steam heating): 209132.5
c_electric (mean for electric heating): 161888.6

The intercept (226355) corresponds to the baseline category: hot air heating.
The other coefficients are differences from the baseline:
▶ Hot water/steam: 226355 - 17223 = 209132
▶ Electric: 226355 - 64467 = 161888

22/52

OLS: Example 3

Now let’s build a model using all six features.

> fm = lm(data = sh,
price ~ 1 + livingArea + age + bedrooms +

bathrooms + heating + new)
> summary(fm)
...
Coefficients:

Estimate ...
(Intercept) 4667.227 ...
livingArea 105.656 ...
age -39.883 ...
...

RMSE becomes $66820.67.

23/52

𝑅2

An alternative way to measure our fitted model is to ask:

How much lower is our sum of squared errors than the sample mean?

This leads to the definition of 𝑅2 for fitted values ̂𝑌𝑖 from a predictive model:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑌𝑖 − ̂𝑌𝑖)2

∑𝑛
𝑖=1(𝑌𝑖 − 𝑌 𝑖)2

.

24/52

𝑅2

If 𝑅2 is close to 1, then our SSE ismuch lower than the sample mean.
If 𝑅2 is negative, SSE is higher than the sample mean!
(For “reasonable” models, this will not happen.)
Each of our new models increased 𝑅2. For our last model, 𝑅2 ≈ 0.539.
(In the R summary of a lm call, 𝑅2 is reported as “multiple R-squared”.)

25/52

Idea 4: “Feature engineering”

Why stop there? We could use our existing features to create new features.
This is typically referred to as feature engineering. We look at a few examples:
▶ Preprocessing steps: Centering and standardization
▶ Nonlinear transformations: Higher order terms, interactions, logarithms
▶ Complex models: Embeddings,

26/52

Preprocessing: Centering and standardization

Two common steps in preprocessing are centering by removing the mean,
and additionally standardizing by dividing by the sample standard deviation:

𝑋̃𝑖𝑗 =
𝑋𝑖𝑗 − 𝑋𝑗

𝜎̂𝑗
.

These steps have the effect of ensuring all covariates have zero sample mean,
and sample standard deviation one (i.e., normalized dispersion).
On the problem set you will investigate some of the consequences of centering
and standardizing.
Standardizing will not change the 𝑅2 of your model, even though it changes
coefficient values – check this!

27/52

Higher order terms
Even though OLS yields a “linear” model”, we can add features that are nonlinear
transformations of the data.

Example: Suppose we add second power of livingArea.
R formula:
price ~ 1 + livingArea + age + bedrooms +

bathrooms + heating + new + I(livingArea^2)

New 𝑅2: 0.5439 (higher than before).
We could add more powers..., e.g.:
... + I(livingArea^2) + I(livingArea^3) + I(livingArea^4)This gives
𝑅2 of 0.5483 (slightly higher still).
Notice what’s happening to 𝑅2...

28/52

Higher order terms
Even though OLS yields a “linear” model”, we can add features that are nonlinear
transformations of the data.
Example: Suppose we add second power of livingArea.
R formula:
price ~ 1 + livingArea + age + bedrooms +

bathrooms + heating + new + I(livingArea^2)

New 𝑅2: 0.5439 (higher than before).
We could add more powers..., e.g.:
... + I(livingArea^2) + I(livingArea^3) + I(livingArea^4)This gives
𝑅2 of 0.5483 (slightly higher still).
Notice what’s happening to 𝑅2...

28/52

Higher order terms
Even though OLS yields a “linear” model”, we can add features that are nonlinear
transformations of the data.
Example: Suppose we add second power of livingArea.
R formula:
price ~ 1 + livingArea + age + bedrooms +

bathrooms + heating + new + I(livingArea^2)

New 𝑅2: 0.5439 (higher than before).

We could add more powers..., e.g.:
... + I(livingArea^2) + I(livingArea^3) + I(livingArea^4)This gives
𝑅2 of 0.5483 (slightly higher still).
Notice what’s happening to 𝑅2...

28/52

Higher order terms
Even though OLS yields a “linear” model”, we can add features that are nonlinear
transformations of the data.
Example: Suppose we add second power of livingArea.
R formula:
price ~ 1 + livingArea + age + bedrooms +

bathrooms + heating + new + I(livingArea^2)

New 𝑅2: 0.5439 (higher than before).
We could add more powers..., e.g.:
... + I(livingArea^2) + I(livingArea^3) + I(livingArea^4)This gives
𝑅2 of 0.5483 (slightly higher still).
Notice what’s happening to 𝑅2...

28/52

Interaction terms

When changing the value of one covariate affects the slope of another, we can
add an interaction term in the model.

E.g., consider a regression model with two covariates:

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖1 + ̂𝛽2𝑋𝑖2.

The model with an interaction between the two covariates is:

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖1 + ̂𝛽2𝑋𝑖2 + ̂𝛽1∶2𝑋𝑖1𝑋𝑖2.

See appendix for more details.

29/52

Interaction terms

When changing the value of one covariate affects the slope of another, we can
add an interaction term in the model.
E.g., consider a regression model with two covariates:

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖1 + ̂𝛽2𝑋𝑖2.

The model with an interaction between the two covariates is:

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖1 + ̂𝛽2𝑋𝑖2 + ̂𝛽1∶2𝑋𝑖1𝑋𝑖2.

See appendix for more details.

29/52

Interaction terms

When changing the value of one covariate affects the slope of another, we can
add an interaction term in the model.
E.g., consider a regression model with two covariates:

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖1 + ̂𝛽2𝑋𝑖2.

The model with an interaction between the two covariates is:

̂𝑌𝑖 = ̂𝛽0 + ̂𝛽1𝑋𝑖1 + ̂𝛽2𝑋𝑖2 + ̂𝛽1∶2𝑋𝑖1𝑋𝑖2.

See appendix for more details.

29/52

Adding nonlinear terms

Higher order terms and interactions are powerful techniques for making OLS
models much more flexible.
A warning: now the effect of a single feature on the fitted value is captured by
multiple coefficients!

30/52

Modern feature engineering

Besides higher order terms and interactions, there are many other
transformations that abound, e.g.:
▶ Logarithmic transformations: Often used for positive, real-valued data that is

strongly “skewed” (heavy-tailed), e.g., incomes, revenues/sales, counts, etc.
(See appendix.)

▶ Embeddings: Algorithms that compress high-dimensional data (text,
images, speech) into lower-dimensional representations

31/52

Modern feature engineering (continued)

▶ Time series: Low-dimensional representation of temporally varying data
streams

▶ Context-aware transformations: Taking advantage of domain knowledge to
transform data in meaningful ways (e.g., summary metrics that capture
patient health based on test results)

▶ LLM-generated features: Using a foundation model to “create” features
from high-dimensional data (especially text)

▶ Many more!

32/52

Feature engineering and 𝑅2

When we add features and run OLS, we can only make 𝑅2 higher:

▶ OLS aims tominimize SSE given the features.
▶ If we add features, then the minimum SSE can only get smaller
▶ Smaller SSE ⟹ higher 𝑅2.
Is this what we want? What would happen if we build an OLS model with as
many features as we have data points?
Would such a model be a “good” predictive model?

33/52

The problem with 𝑅2

The basic problem with 𝑅2 as a measure of predictive performance is that it is an
in-samplemeasure of performance:
The same data that is used to fit the model is also used to evaluate how well it
performs.

But this isn’t prediction! This is just “summarizing” the data we already have.
For prediction, we need to measure how we do out of sample: i.e., on data that
was not used to fit the model.

34/52

The problem with 𝑅2

The basic problem with 𝑅2 as a measure of predictive performance is that it is an
in-samplemeasure of performance:
The same data that is used to fit the model is also used to evaluate how well it
performs.
But this isn’t prediction! This is just “summarizing” the data we already have.
For prediction, we need to measure how we do out of sample: i.e., on data that
was not used to fit the model.

34/52

Out of sample evaluation

This is a central insight across all of data science:
In general, we should keep separate the data that is used to build models for
prediction,
and data that is used to evaluate those same models.
Our goal is generalization beyond the sample, to the population.
The only way to evaluate how we generalize is to check how the model performs
on data it hasn’t already seen.

35/52

Appendix: Algebra of OLS

OLS solution

In this appendix, we assume that 𝐗 includes an intercept term (i.e., the first
column consists of all 1’s).
Thus 𝐗 has 𝑝 + 1 columns.
We assume that 𝑝 < 𝑛 and 𝐗 has full rank = 𝑝 + 1.

Theorem
The OLS linear regression coefficient vector 𝜷̂ that minimizes SSE is given by:

𝜷̂ = (𝐗⊤𝐗)
−1 𝐗⊤𝐘.

(Check that dimensions make sense here: 𝜷̂ is (𝑝 + 1) × 1.)

36/52

OLS solution: Geometry
The SSE is the squared Euclidean norm of 𝐘 − 𝐘̂:

SSE =
𝑛

∑
𝑖=1

(𝑌𝑖 − ̂𝑌𝑖)2 = ‖𝐘 − 𝐘̂‖2 = ‖𝐘 − 𝐗𝜷̂‖2.

Note that as we vary 𝜷̂ we range over
linear combinations of the columns of 𝐗.
The collection of all such linear combinations is
the subspace spanned by the columns of 𝐗.

So the linear regression question is

What is the “closest” such linear combination to 𝐘?

37/52

OLS solution: Geometry
What is the “closest” such linear combination to 𝐘?
This “closest” combination is the projection of 𝐘 into the subspace spanned by
the columns of 𝐗:146 3. Linear Methods for Regression

x1

x2

y

ŷ

FIGURE 3.2. The N-dimensional geometry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection ŷ represents the vector
of the least squares predictions

The predicted values at an input vector x0 are given by f̂(x0) = (1 : x0)T β̂;
the fitted values at the training inputs are

ŷ = Xβ̂ = X(XTX)−1XTy, (3.7)

where ŷi = f̂(xi). The matrix H = X(XTX)−1XT appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.

Figure 3.2 shows a different geometrical representation of the least squares
estimate, this time in IRN . We denote the column vectors ofX by x0,x1, . . . ,xp,
with x0 ≡ 1. For much of what follows, this first column is treated like any
other. These vectors span a subspace of IRN , also referred to as the column
space of X. We minimize RSS(β) = ∥y −Xβ∥2 by choosing β̂ so that the
residual vector y − ŷ is orthogonal to this subspace. This orthogonality is
expressed in (3.5), and the resulting estimate ŷ is hence the orthogonal pro-
jection of y onto this subspace. The hat matrix H computes the orthogonal
projection, and hence it is also known as a projection matrix.

It might happen that the columns of X are not linearly independent, so
that X is not of full rank. This would occur, for example, if two of the
inputs were perfectly correlated, (e.g., x2 = 3x1). Then XTX is singular
and the least squares coefficients β̂ are not uniquely defined. However,
the fitted values ŷ = Xβ̂ are still the projection of y onto the column
space of X; there is just more than one way to express that projection
in terms of the column vectors of X. The non-full-rank case occurs most
often when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement

1Figure courtesy of Elements of Statistical Learning.
38/52

Hat matrix [∗]

Since: 𝐘̂ = 𝐗𝜷̂ = 𝐗(𝐗⊤𝐗)−1𝐗⊤𝐘, we have:

𝐘̂ = 𝐇𝐘,

where:
𝐇 = 𝐗(𝐗⊤𝐗)−1𝐗⊤.

𝐇 is called the hatmatrix.
It projects 𝐘 into the subspace spanned by the columns of 𝐗.
It is symmetric and idempotent, i.e., 𝐇2 = 𝐇.

39/52

Key assumptions

We assumed that 𝑝 < 𝑛 and 𝐗 has full rank 𝑝 + 1.
What happens if these assumptions are violated?

40/52

Collinearity

If 𝐗 does not have full rank, then 𝐗⊤𝐗 is not invertible.
In this case, the optimal 𝜷̂ that minimizes SSE is not unique.
The problem is that if a column of 𝐗 can be expressed as a linear combination of
other columns, then the coefficients of these columns are not uniquely
determined.2

We refer to this problem as collinearity.

2In practice, 𝐗may have full rank but be ill conditioned, in which case the coefficients
𝜷̂ = (𝐗⊤𝐗)−1𝐗⊤𝐘 will be very sensitive to the feature values in 𝐗.

41/52

Collinearity: Example

If we run lm on a less than full rank design matrix, we obtain NA in the coefficient
vector:
> sh$livingArea_copy = sh$livingArea
> fm = lm(data = sh, price ~ 1 + livingArea + livingArea_copy)
> coef(fm)

(Intercept) livingArea livingArea_copy
13439.3940 113.1225 NA

42/52

High dimension

If 𝑝 ≈ 𝑛, then the number of covariates is of a similar order to the number of
observations.
Assuming the number of observations is large, this is known as the
high-dimensional regime.
When 𝑝 + 1 ≥ 𝑛, we have enough degrees of freedom (through the 𝑝 + 1
coefficients) to perfectly fit the data. (What is the 𝑅2 of such a model?)
Note that if 𝑝 ≥ 𝑛, then in general the model is nonidentifiable.

43/52

Appendix: Interaction terms and logarithmic
transformations

Interaction terms
Consider the following example:
> fm = lm(data = sh, formula = price ~ 1 + new + livingArea)
> summary(fm)
...
Coefficients:

Estimate ...
(Intercept) -3680.83 ...
newNo 15394.22 ...
livingArea 114.52 ...
...

Interpretation:
▶ new = Yes ⟹ price ≈ -3681 + 115 × livingArea.
▶ new = No ⟹ price ≈ 11713 + 115 × livingArea.
Note that both have the same slope.

44/52

Interaction terms
Visualization:

0e+00

2e+05

4e+05

6e+05

8e+05

1000 2000 3000 4000 5000

livingArea

pr
ic

e

new

Yes

No

The plot suggests higher slope when New = Yes.
45/52

Interaction terms
> fm = lm(data = sh,

formula = price ~ 1 + new +
livingArea + new:livingArea)

> summary(fm)
...
Coefficients:

Estimate ...
(Intercept) -38045.90 ...
newNo 50804.51 ...
livingArea 128.28 ...
newNo:livingArea -14.37 ...
...
Interpretation:

▶ When new = Yes,
then price ≈ -38046 + 128 × livingArea.

▶ When new = No,
then price ≈ 12759 + 114 × livingArea.

46/52

Interaction terms
Visualization:

0e+00

2e+05

4e+05

6e+05

8e+05

1000 2000 3000 4000 5000

livingArea

pr
ic

e

new

Yes

No

This fit is improved over the previous model (slightly higher 𝑅2).
47/52

Logarithmic transformations

In many contexts, outcomes are positive: e.g., physical characteristics (height,
weight, etc.), counts, revenues/sales, etc.
For such outcomes linear regression can be problematic, because it can lead to
a model where ̂𝑌𝑖 is negative for some 𝐗𝑖.
One approach to deal with this issue is to take a logarithmic transformation of
the data before applying OLS:

log 𝑌𝑖 ≈ ̂𝛽0 +
𝑝

∑
𝑗=1

̂𝛽𝑗𝑋𝑖𝑗 .

48/52

Logarithmic transformations

Exponentiating, this becomes a model that ismultiplicative:

𝑌𝑖 ≈ 𝑒 ̂𝛽0𝑒 ̂𝛽1𝑋𝑖1 ⋯ 𝑒 ̂𝛽𝑝𝑋𝑖𝑝 .

So holding all other covariates constant, a one unit change in 𝑋𝑖𝑗 is associated
with a proportional change in the fitted value by 𝑒 ̂𝛽𝑗 .

Useful intuition: 𝑒 ̂𝛽𝑗 ≈ 1 + ̂𝛽𝑗 for small ̂𝛽𝑗 , so:
A one unit change in 𝑋𝑖𝑗 is associated with a factor ≈ 1 + ̂𝛽𝑗 change in the fitted
value.
Using a similar approach, can show that if both data and outcome are logged,
then ̂𝛽𝑗 gives the percentage change in the outcome associated with a one
percent change in the covariate.

49/52

Logarithmic transformations: Example
Data: 2014 housing and income by county, from U.S. Census
First plot number of housing units against median household income:

0e+00

1e+06

2e+06

3e+06

25000 50000 75000 100000 125000
med_income

ho
us

in
g_

un
its

50/52

Logarithmic transformations: Example
Data: 2014 housing and income by county, from U.S. Census
Now do the same with logarthmically transformed data:

10

11

12

13

14

15

10.5 11.0 11.5
log(med_income)

lo
g(

ho
us

in
g_

un
its

)

51/52

Logarithmic transformations: Example

Data: 2014 housing and income by county, from U.S. Census
The resulting model:
> fm = lm(data = income,

formula = log(housing_units) ~ 1 + log(med_income))
> summary(fm)
...
Coefficients:

Estimate ...
(Intercept) -1.194 ...
log(med_income) 1.139 ...
...

The coefficient can be interpreted as saying that a 1% higher median household
income is associated with a 1.14% higher number of housing units, on average.

52/52

	Appendix: Algebra of OLS
	Appendix: Interaction terms and logarithmic transformations

