
MS&E 226: Fundamentals of Data Science
Lecture 3: Train-validate-test

Ramesh Johari
rjohari@stanford.edu

1/29

The prediction problem: Formalism

▶ 𝐗,𝐘: Data we are given
▶ 𝑋⃗: Covariate vector of a new data point from the population
▶ 𝑌 : True outcome associated with 𝑋⃗
▶ ̂𝑓 (⋅): Fitted model (input: covariate vector; output: predicted outcome)
Goal: Using 𝐗 and 𝐘, construct ̂𝑓 so that 𝑌 ≈ ̂𝑓 (𝑋⃗).

2/29

A “good” fitted model

A “good” fitted model should minimize the expected prediction error on new
data, also called generalization error:

𝔼𝑋⃗,𝑌 [(𝑌 − ̂𝑓 (𝑋⃗))2| ̂𝑓].

Note that in this definition we condition on the fitted model ̂𝑓 .
The only randomness is in the new data point 𝑋⃗ and 𝑌 drawn uniformly at
random from the population.1

1There are other forms of generalization error; e.g., you might also assume the new 𝑋⃗ is also
known. We will return to this later.

3/29

Out-of-sample error

Prediction fundamentally asks whether a model performs well on data that was
not used for fitting the model.

This means any assessment of the prediction error of a fitted model relies on
data that is out-of-sample, i.e., not part of the sample used for fitting (unlike 𝑅2!).
This insight is the core of nearly all methodology for fitting, selecting, and
evaluating predictive models.

4/29

Out-of-sample error

Prediction fundamentally asks whether a model performs well on data that was
not used for fitting the model.
This means any assessment of the prediction error of a fitted model relies on
data that is out-of-sample, i.e., not part of the sample used for fitting (unlike 𝑅2!).

This insight is the core of nearly all methodology for fitting, selecting, and
evaluating predictive models.

4/29

Out-of-sample error

Prediction fundamentally asks whether a model performs well on data that was
not used for fitting the model.
This means any assessment of the prediction error of a fitted model relies on
data that is out-of-sample, i.e., not part of the sample used for fitting (unlike 𝑅2!).
This insight is the core of nearly all methodology for fitting, selecting, and
evaluating predictive models.

4/29

Train-validate-test

Train-validate-test

The most common workflow for prediction is:
1. Separate your data into three groups: training, validation, testing.
2. Training: “Fitting models”
3. Validation: “Selecting a winning fitted model”
4. Testing: “Evaluating the winner”
Note separation of training sample from validation and testing (“out-of-sample”).
Commonly, only the first two stages are used;
in such cases, “validation” is often called “testing” (confusing!).

5/29

Training

Training involves fitting models using only the training data.
Example: You might fit a range of linear models, using different sets of
covariates, higher order terms, interaction terms, transformed or engineered
variables, etc.

6/29

Validation
The validation step estimates the generalization error of the different models,
and chooses the best one.
Formally:
▶ Suppose samples (𝐗̃1, ̃𝑌1), … , (𝐗̃𝑘, ̃𝑌𝑘) in the validation set.
▶ For each fitted model ̂𝑓 , estimate the prediction error as follows:

1
𝑘

𝑘

∑
𝑖=1

(̃𝑌𝑖 − ̂𝑓 (𝐗̃𝑖))2. (1)

This is themean squared error (MSE) on the validation set.
▶ Choose the model with the smallest MSE on the validation set (the

“winner”).

7/29

Validation

Why does validation ensure we select “good” predictive models?
Intuitively:
As the size of the validation set grows, the validation step picks a fitted model
that has the lowest average prediction error over the population.

8/29

Validation

Why does validation ensure we select “good” predictive models?
Formally:
By the law of large numbers, as 𝑘 → ∞,

1
𝑘

𝑘

∑
𝑖=1

(̃𝑌𝑖 − ̂𝑓 (𝐗̃𝑖))2 →

𝔼𝑋⃗,𝑌 [(𝑌 − ̂𝑓 (𝑋⃗))2| ̂𝑓] (generalization error)

9/29

Testing

Suppose that samples (𝐗̃𝑘+1, ̃𝑌𝑘+1), … , (𝐗̃ℓ, ̃𝑌ℓ) are in the test set.
We compute the test MSE as:

1
ℓ − 𝑘

ℓ

∑
𝑖=𝑘+1

(̃𝑌𝑖 − ̂𝑓 ∗(𝐗̃𝑖))2.

Here ̂𝑓 ∗ is the winning model.

10/29

Testing

If validation already picks a winner, why do we need testing?
Because: In practice, with finite validation data, the error of the winning model is
typically an underestimate of its true prediction error! (You will investigate why
on the problem set.)
The testing stage gives an unbiased (i.e., accurate) estimate of the true
prediction error of the winning model. (Not all prediction problems require a
testing stage.)

11/29

Example: Model selection, validation, and testing

For this example, we generate 300 𝑋1, 𝑋2 as i.i.d. 𝑁(0, 1) random variables.
We then generate 300 𝑌 random variables as:

𝑌𝑖 = 1 + 2𝑋𝑖1 + 3𝑋𝑖2 + 𝜖𝑖,

where 𝜖𝑖 are i.i.d. 𝑁(0, 5) random variables.
The training, validation, and test separation is 100/100/100 samples,
respectively.

12/29

Example: Model selection, validation, and testing
We trained the following five models, then ran them through the validation and
test set.
For each we computed the square root of the mean squared prediction error
(RMSE).2

Model Training Validation Test
Y ~ 1 + X1 5.37 5.58
Y ~ 1 + X2 4.87 4.95
Y ~ 1 + X1 + X2 4.44 4.67
Y ~ 1 + X1 + X2 +

I(X1^2) + I(X2^2) 4.39 4.64 5.80
Y ~ 1 + X1 + X2 +

I(X1^2) + I(X2^2) +
. . .
I(X1^5) + I(X2^5) 4.29 4.75

2RMSE = “root mean squared error”13/29

Example: Model selection, validation, and testing

Uncovering the other entries:
Model Training Validation Test
Y ~ 1 + X1 5.37 5.58 6.64
Y ~ 1 + X2 4.87 4.95 6.06
Y ~ 1 + X1 + X2 4.44 4.67 5.76
Y ~ 1 + X1 + X2 +

I(X1^2) + I(X2^2) 4.39 4.64 5.80
Y ~ 1 + X1 + X2 +

I(X1^2) + I(X2^2) +
. . .
I(X1^5) + I(X2^5) 4.29 4.75 5.91

14/29

Regularization

An abundance of features...

Lets return to the problem we discussed at the end of last lecture:
We could keep adding features and rerun OLS (and 𝑅2 would keep increasing
as a result). But this risks being a model that generalizes increasingly poorly (as
in the last example).
What can we do?

15/29

Regularization

One way to achieve good generalization is to regularize the objective function:
Add a penalty for additional model complexity.
Important note: Always standardize variables prior to running regularized
regression methods.

16/29

Regularization: Ridge regression

Instead of minimizing SSE, minimize:

SSE + 𝜆
𝑝

∑
𝑗=1

| ̂𝛽𝑗|2.

where 𝜆 > 0. This is called ridge regression.
In practice, the consequence is that it penalizes 𝜷̂ vectors with “large” norms.

17/29

Regularization: Lasso

Instead of minimizing SSE, minimize:

SSE + 𝜆
𝑝

∑
𝑗=1

| ̂𝛽𝑗|

where 𝜆 > 0.
This is called the Lasso.
In practice, the resulting coefficient vector will be “sparser” (i.e., have fewer
nonzero entries) than the unregularized coefficient vector.

18/29

Regularization

Both lasso and ridge regression are “shrinkage” methods for covariate selection:

▶ Relative to OLS, both lasso and ridge regression will yield coefficients 𝜷̂ that
have “shrunk” towards zero.

▶ The covariates that are most “explanatory” of variation in the outcome are
the ones that will be retained.

▶ Lasso typically yields a much smaller subset of nonzero coefficients than
ridge regression or OLS (i.e., fewer nonzero entries in 𝜷̂).

19/29

An example with regularization: Baseball hitters

Data taken from An Introduction to Statistical Learning.
Consists of statistics and salaries for 263 Major League Baseball players.
We use this dataset to:
▶ Develop the train-test method
▶ Apply lasso and ridge regression
▶ Compare and interpret the results
We’ll use the glmnet package for this example.

20/29

Loading the data

glmnet uses matrices rather than data frames for model building:
> library(ISLR)
> library(glmnet)

> data(Hitters)
> hitters.df = subset(na.omit(Hitters))

> X = model.matrix(Salary ~ 0 + ., hitters.df)
> Y = hitters.df$Salary

21/29

Standardization

When running lasso and ridge regression, we standardize the data:

> X = scale(X)
> Y = scale(Y)

Note: By default, glmnet will internally standardize the covariates, and then
return coefficients in the original scale (undoing this standardization). We
standardize explicitly in advance here so that we can compare coefficients
across covariates.

22/29

Training vs. test set

Here is a simple way to construct training and test sets from the single dataset:
train.ind = sample(nrow(X), round(nrow(X)/2))
X.train = X[train.ind,]
X.test = X[-train.ind,]
Y.train = Y[train.ind]
Y.test = Y[-train.ind]

23/29

Ridge and lasso

Building a lasso model:
> lambdas = 10^seq(-3,3.4,0.1)
> fm.lasso = glmnet(X.train,

Y.train, alpha = 1,
lambda = lambdas, thresh = 1e-12)

Setting alpha = 0 gives ridge regression.
Make predictions as follows at 𝜆 = lam:
> mean((Y.test -

predict(fm.lasso, s = lam, newx = X.test))^2)

24/29

Results

0.7

0.8

0.9

1e−03 1e−02 1e−01 1e+00 1e+01
lambda

Te
st

 s
et

 e
rr

or Model

Lasso

Ridge

What is happening to lasso?
25/29

Lasso coefficients
Using plot(fm.lasso, xvar="lambda"):

−6 −4 −2 0 2

−
1.

5
−

0.
5

0.
5

1.
0

1.
5

Log Lambda

C
oe

ffi
ci

en
ts

16 13 6 0 0

26/29

Ridge coefficients
Using plot(fm.lasso, xvar="lambda"):

−6 −4 −2 0 2

−
1.

5
−

0.
5

0.
0

0.
5

1.
0

1.
5

Log Lambda

C
oe

ffi
ci

en
ts

20 20 20 20 20

27/29

Learning algorithms vs. fitted models

Learning algorithms vs. fitted models

In machine learning, a (supervised) learning algorithm is a function or algorithm
that takes as input a training data set 𝐗,𝐘, and produces as output a fitted
model ̂𝑓 .
Think of this as code that produces, e.g., a fitted linear regression, lasso
regression, ridge regression, etc.
The fitted model is the specific realization of coefficients or parameters, which
we’ve abbreviated ̂𝑓 .
Example: The R call fm = lm(data = input, formula = Y ~ 1 + X1 + X2)
takes as input the data frame input, and produces as output a fitted model fm
(i.e., the linear regression coefficients), using the two covariates X1 and X2 to
predict the outcome.

28/29

A plethora of learning algorithms
There are many, many learning algorithms out there! We’ll touch on some of
these, but not all:
▶ Linear methods: Linear and logistic regression; regularized regression;

quantile regression; generalized linear models
▶ Tree methods: Decision trees; random forests; gradient boosted trees;

XGBoost
▶ Neural networks: Feed-forward neural networks; convolutional neural

networks; recurrent neural networks
▶ Instance-based methods: 𝑘-nearest neighbors; locally weighted regression
▶ Generative methods: Transformers; diffusion models; variational

autoencoders
As supervised learning algorithms, all can be put through the train-validate-test
framework to obtain high performance fitted models.

29/29

	Train-validate-test
	Regularization
	Learning algorithms vs. fitted models

