

MS&E 226: Fundamentals of Data Science

Lecture 5: Classification

Ramesh Johari

Classification problems

Overview

Thus far in our study of prediction, we have focused on the *regression* problem: Predict *continuous* outcomes.

In this lecture we (briefly) cover the *classification* problem: Predict *discrete* outcomes.

Specifically, we will focus on *binary classification*, where the outcome is zero or one.

Example: Spam filtering

Suppose that you are running a mail server.

Given an incoming message your goal is to decide: Is this spam or not?

Typical covariates:

- ▶ Counts of key words, phrases, etc.
- ▶ Indicator for origin domain of e-mail
- ▶ Indicators for links/domains present in the e-mail
- ▶ Indicator for whether sender is in your address book

Example: Medical diagnostics

Suppose that given a patient, your goal is to determine whether this person is likely to suffer an adverse medical event (e.g., a heart attack).

Typical covariates:

- ▶ Weight, body mass index, obesity indicator
- ▶ Age
- ▶ Gender
- ▶ Cholesterol levels
- ▶ Indicator for family history
- ▶ Results of medical tests (blood tests, imaging, etc.)

Example: Hiring in a labor market

Suppose that, given a job opening and an applicant, your goal is to determine whether the applicant will be hired for the job opening.

Typical covariates:

- ▶ Indicators for skills of the applicant
- ▶ Indicators for skills required on the job
- ▶ Years of education, work experience of the applicant
- ▶ Years of education, work experience required in the job opening
- ▶ *Interactions* between the preceding covariates
- ▶ Detail in applicant's profile
- ▶ Who made the first contact: applicant or employer

Classification: Formalism

Formally, classification problems look a lot like what we've studied so far:

- ▶ There is a dataset with n observations; Y_i is the outcome in the i 'th observation, and \mathbf{X}_i is the covariate vector corresponding to the i 'th observation.

Classification: Formalism

Formally, classification problems look a lot like what we've studied so far:

- ▶ There is a dataset with n observations; Y_i is the outcome in the i 'th observation, and \mathbf{X}_i is the covariate vector corresponding to the i 'th observation.
- ▶ For each i , $Y_i \in \{0, 1\}$ (or some other binary set). We refer to zeroes as "negative" outcomes, and ones as "positive" outcomes.

Classification: Formalism

Formally, classification problems look a lot like what we've studied so far:

- ▶ There is a dataset with n observations; Y_i is the outcome in the i 'th observation, and \mathbf{X}_i is the covariate vector corresponding to the i 'th observation.
- ▶ For each i , $Y_i \in \{0, 1\}$ (or some other binary set). We refer to zeroes as "negative" outcomes, and ones as "positive" outcomes.
- ▶ Using the data, fit a model \hat{f} (a "classifier"). Given a covariate vector \vec{X} , $\hat{f}(\vec{X}) \in \{0, 1\}$.
- ▶ The model is evaluated through some measure of its prediction error on new data (generalization error). Common example is expected *0-1 loss* on a new sample:

$$\mathbb{E}_Y[\mathbb{I}\{Y \neq \hat{f}(\vec{X})\} | \hat{f}, \vec{X}] = \mathbb{P}_Y(Y \neq \hat{f}(\vec{X}) | \hat{f}, \vec{X}).$$

0-1 loss and “accuracy”

The 0-1 loss function is a measure of *accuracy*: How well, on average, does the classifier make predictions?

Another way to say it: A good classifier minimizes the number of samples on which the classifier makes a classification mistake.

Is this always what we want?

Classification: Visualization

Train-validate-test

The train-validate-test methodology carries over to classification in a straightforward way:

Given a dataset, split it into *training*, *validation*, and *test* sets.

- ▶ *Training*: Use the training data to build different candidate classifiers $\hat{f}^{(1)}, \dots, \hat{f}^{(L)}$.
- ▶ *Validation*: Compute the average target loss (e.g., 0-1 loss) of each of the L classifiers on the validation data. Choose the classifier \hat{f}^* with the lowest loss (i.e., lowest misclassification rate, or highest accuracy).
- ▶ *Test*: Make predictions using \hat{f}^* on the test set to get an unbiased estimate of the generalization error.

Cross validation

Similarly, cross validation carries over in a straightforward way.

As noted previously, cross validation is a completely general technique that can be applied regardless of the model class or loss function being used.

In particular, K -fold CV can be used in exactly the same way for evaluation and selection of classifiers with any chosen loss criterion (e.g., 0-1 loss).

False positives and false negatives

Example: Fraud detection

Suppose that you are asked to build a fraud detection algorithm for PayPal.

Data: Transactions, including account info, profile info, etc. of both parties, as well as amount and type of transaction

Outcomes: For each transaction, either zero (not fraud) or one (fraud)

Suppose: 0.3% of transactions are fraud.

Your job: *build a “good” classifier.* Is accuracy the right objective?

Beyond accuracy

Because of the issue identified in the preceding example, we should distinguish between misclassification of *positive* samples and *negative* samples.

For this purpose we typically use the *confusion matrix* of a classifier on a test set.¹

		Predicted		Total
		0	1	
Actual	0	TN	FP	TN + FP
	1	FN	TP	FN + TP
Total	TN + FN	TP + FP	n	

Here:

- ▶ TN = # of *true negatives*; FP = # of *false positives*
- ▶ FN = # of *false negatives*; TP = # of *true positives*

¹Be careful! One source of "confusion" about confusion matrices is that sometimes the truth indexes the rows, and sometimes the truth indexes the columns.

Confusion matrices

How to interpret confusion matrices:

Other metrics

Nearly every metric of interest in binary classification can be derived from confusion matrices:

- ▶ Accuracy = $(TP + TN)/n$.
- ▶ Mean 0-1 loss = $(FP + FN)/n = 1 - \text{accuracy}$.
- ▶ True positive rate (TPR) = $TP/(FN + TP)$.
- ▶ False positive rate (FPR) = $FP/(TN + FP)$.
- ▶ True negative rate (TNR) = $TN/(TN + FP)$.
- ▶ False negative rate (FNR) = $FN/(FN + TP)$.
- ▶ Sensitivity = TPR.
- ▶ Specificity = TNR.
- ▶ Precision = $TP/(TP + FP)$.
- ▶ Recall = sensitivity = TPR.
- ▶ Type I error rate = FPR.
- ▶ Type II error rate = FNR.
- ▶ False discovery rate = $FP/(TP + FP)$

False positives and false negatives

Except for accuracy and 0-1 loss, all these metrics are just different ways of measuring the two kinds of error that can be made by the classifier:

1. Misclassifying a true negative example as a positive (false positive, or Type I error).
2. Misclassifying a true positive example as a negative (false negative, or Type II error).

A tradeoff

Note that:

1. It is easy to design a classifier with no false positives. (How?)
2. It is easy to design a classifier with no false negatives. (How?)

On the other hand, in general there is “no free lunch”: it is generally not possible to ensure *both* no false positives and no false negatives.

In general, for “good” classifiers, *reducing false positives comes at the expense of increasing false negatives.*

Therefore in designing a classifier it is important to consider which type of error is more consequential to you.²

²Note that this sometimes leads to objectives that are *weighted sums* of the entries of the confusion matrix.

Example: Fraud detection

As an example, suppose that you build a classifier for fraud detection on a dataset with $n = 50,000$ with the following confusion matrix:

		Predicted		Total
		Not Fraud	Fraud	
Actual	Not Fraud	49,603	247	49,850
	Fraud	22	128	150
Total		49,625	375	50,000

Example: Fraud detection

As an example, suppose that you build a classifier for fraud detection on a dataset with $n = 50,000$ with the following confusion matrix:

		Predicted		Total
		Not Fraud	Fraud	
Actual	Not Fraud	49,603	247	49,850
	Fraud	22	128	150
Total		49,625	375	50,000

- ▶ Note that this classifier has *lower* accuracy than one that just always predicts "Not Fraud."
- ▶ Would you use this classifier? What if reducing the false negatives to zero also meant increasing false positives to ≈ 1000 ?

Example: Fraud detection

Analysis:

An example: k -nearest-neighbor classification

k-nearest-neighbor classification

Basic version:

- ▶ Given a covariate vector \vec{X} , find the k nearest neighbors.
- ▶ Take a *majority vote* to determine the classification.³

k-NN is an example of an *instance-based* learning algorithm (or “lazy” algorithm):

Computation is done at the time a new prediction is made (the “instance”).

³Ties are typically broken at random among the furthest neighbors, or just by choosing k odd.

Adding a threshold

More generally, let $\text{NN}(k, L)$ denote the k -nearest neighbor algorithm with a *threshold* L :

- ▶ Require at least L of the k nearest neighbors to have label 1 to assign label 1; otherwise assign label 0.
- ▶ Basic algorithm corresponds to $\text{NN}(k, k/2)$.
- ▶ What happens if $L = 0$?
- ▶ What happens if $L > k$?

Example: The CORIS dataset

462 South African males evaluated for heart disease.

Outcome variable: Coronary heart disease (chd).

Covariates:

- ▶ Systolic blood pressure (sbp)
- ▶ Cumulative tobacco use (tobacco)
- ▶ LDL cholesterol (ldl)
- ▶ Adiposity (adiposity)
- ▶ Family history of heart disease (famhist)
- ▶ Type A behavior (typea)
- ▶ Obesity (obesity)
- ▶ Current alcohol consumption (alcohol)
- ▶ Age (age)

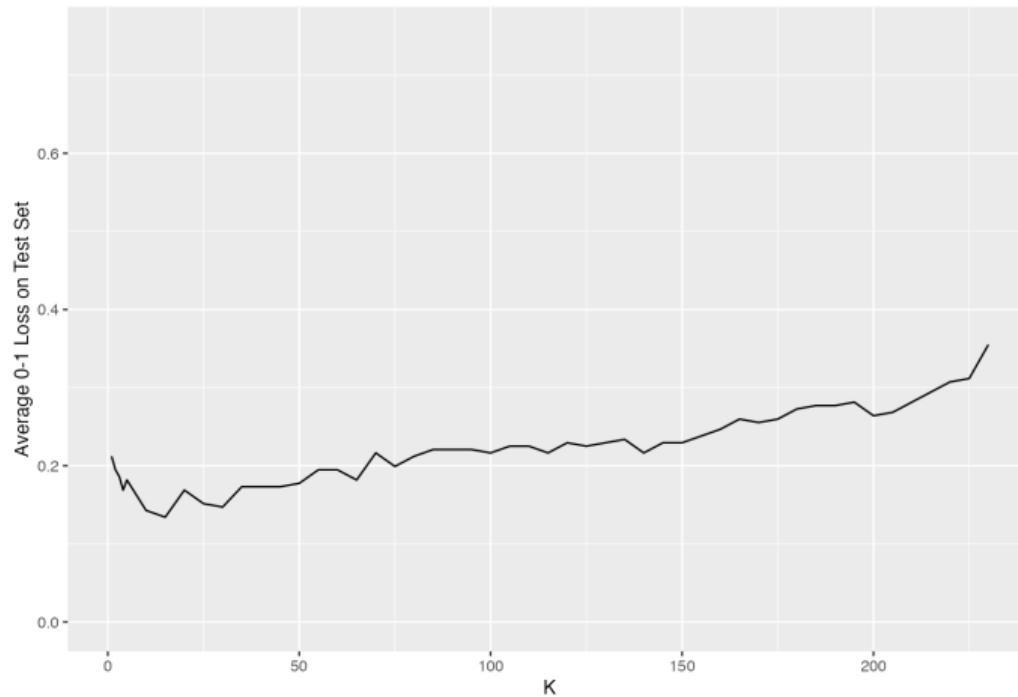
Example: The CORIS dataset

Steps:

- ▶ Import the data
- ▶ (Random) split into train and test
- ▶ Train $\text{NN}(k, L)$ for range of k , and for $L = ak$, $a \in [0, 1.05]$
- ▶ Record TP, FP, TN, FN on test set.

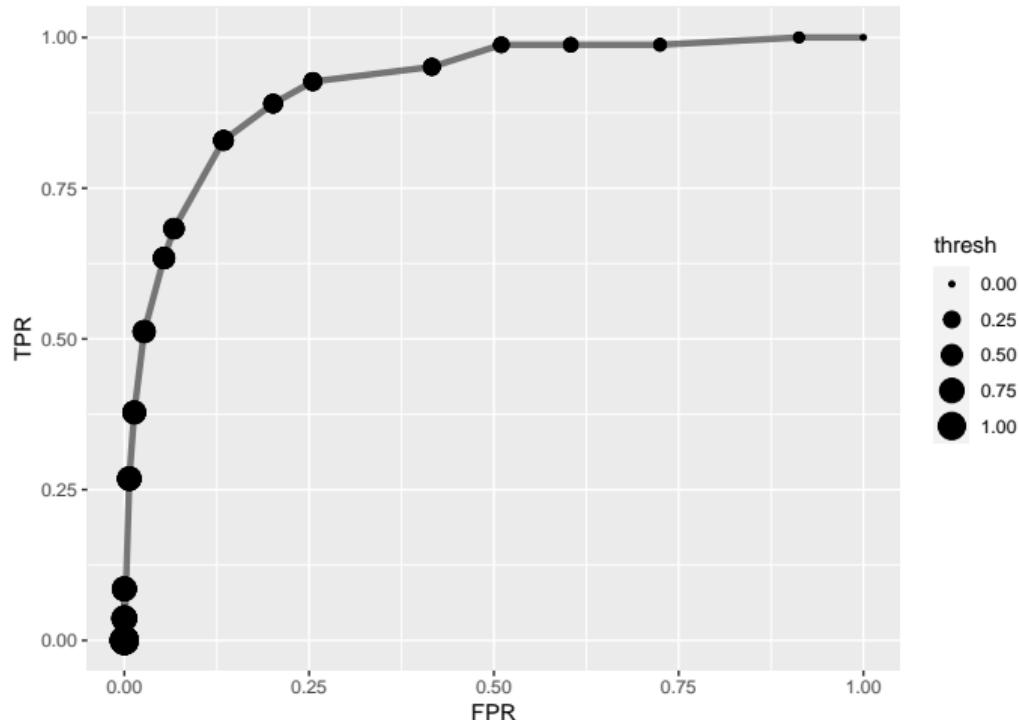
Example: The CORIS dataset

Prediction error (0-1 loss) on test set with threshold $L = 0.34$:



Example: The CORIS dataset

FPR vs. TPR for the choice $k = 20$, as threshold L/k varies:



The ROC curve

The graph of FPR vs. TPR as the classifier's threshold is varied is called the *ROC curve* (for "receiver operating characteristic").

The *area under the curve (AUC)* is often reported as a measure of the quality of the classifier:

- ▶ Better classifiers are further "up and to the left" in the graph.
- ▶ A perfect classifier would have zero FPR and unit TPR \equiv top left corner.
- ▶ Therefore a perfect classifier should have AUC 1.
- ▶ The closer the AUC is to 1, the better the classifier is on *both* types of errors.

More on ROC curves

Appendix: The Bayes classifier [*]

Optimal prediction [*]

In regression, we saw that if we knew the population model, then the *squared-error-minimizing* prediction was the *conditional expectation of the outcome given the covariates*.

What is the analogue of conditional expectation for classification with *0-1 loss* as the objective?

The Bayes classifier [*]

Suppose we want to minimize 0-1 loss (i.e., maximize accuracy). Note that:

$$\mathbb{E}_Y[\mathbb{I}\{Y \neq \hat{f}(\vec{X})\}|\vec{X}] = \mathbb{P}_Y(Y \neq \hat{f}(\vec{X})|\vec{X}).$$

How do we minimize this?

- ▶ If Y is more likely to be 0 than 1 (given \vec{X}), then we should set $\hat{f}(\vec{X}) = 0$; and vice versa.
- ▶ In other words: If $\mathbb{P}_Y(Y = 0|\vec{X}) > 1/2$, set $\hat{f}(\vec{X}) = 0$; otherwise if $\mathbb{P}_Y(Y = 1|\vec{X}) > 1/2$, set $\hat{f}(\vec{X}) = 1$.

This is called the *Bayes classifier*.

The Bayes classifier [*]

The Bayes classifier is unattainable as a predictive model, for the same reason the conditional expectation is unattainable: *we don't know the population model.*

In general, good classification models (with respect to 0-1 loss) are those that approximate the Bayes classifier well.

This observation serves as a foundation for starting to think about analogs of "bias" and "variance" in the context of classification.