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Classification problems



Overview

Thus far in our study of prediction, we have focused on the regression problem:
Predict continuous outcomes.

In this lecture we (briefly) cover the classification problem: Predict discrete
outcomes.

Specifically, we will focus on binary classification, where the outcome is zero or
one.
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Example: Spam filtering
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Suppose that you are running a mail server.
Given an incoming message your goal is to decide: Is this spam or not?

Typical covariates:
P Counts of key words, phrases, etc.
P Indicator for origin domain of e-mail
P> Indicators for links/domains present in the e-mail
P> Indicator for whether sender is in your address book



Example: Medical diagnostics

Suppose that given a patient, your goal is to determine whether this person is
likely to suffer an adverse medical event (e.g., a heart attack).
Typical covariates:

P Weight, body mass index, obesity indicator

» Age

P Gender

P> Cholesterol levels

P> Indicator for family history

P> Results of medical tests (blood tests, imaging, etc.)
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Example: Hiring in a labor market

Suppose that, given a job opening and an applicant, your goal is to determine
whether the applicant will be hired for the job opening.
Typical covariates:

P> Indicators for skills of the applicant

P> Indicators for skills required on the job

P> Years of education, work experience of the applicant

P> Years of education, work experience required in the job opening
P> Interactions between the preceding covariates

P> Detail in applicant’s profile

P Who made the first contact: applicant or employer

5/29



Classification: Formalism

Formally, classification problems look a lot like what we've studied so far:

P There is a dataset with n observations; Y; is the outcome in the i'th
observation, and X, is the covariate vector corresponding to the i'th
observation.
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Classification: Formalism

Formally, classification problems look a lot like what we've studied so far:

P There is a dataset with n observations; Y; is the outcome in the i'th
observation, and X, is the covariate vector corresponding to the i'th
observation.

P Foreachi, Y; € {0, 1} (or some other binary set). We refer to zeroes as
“negative” outcomes, and ones as “positive” outcomes.

> UsiDg the data, fit a model £ (a “classifier”). Given a covariate vector X,
f(X) e {0,1}.

P The model is evaluated through some measure of its prediction error on
new data (generalization error). Common example is expected 0-1 loss on a
new sample:

Ey[{Y # fOOMNF, X1 = Py(Y # fOOIF, X).
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0-1 loss and “accuracy”

The 0-1 loss function is a measure of accuracy: How well, on average, does the
classifier make predictions?

Another way to say it: A good classifier minimizes the number of samples on
which the classifer makes a classification mistake.

Is this always what we want?
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Classification: Visualization
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Train-validate-test

The train-validate-test methodology carries over to classification in a
straightforward way:

Given a dataset, split it into training, validation, and test sets.
P> Training: Use the training data to build different candidate classifiers £V,
o D,
P> Validation: Compute the average target loss (e.g., 0-1 loss) of each of the L
classifiers on the validation data. Choose the classifier f* with the lowest
loss (i.e., lowest misclassification rate, or highest accuracy).

P> Test: Make predictions using f* on the test set to get an unbiased estimate
of the generalization error.
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Cross validation
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Similarly, cross validation carries over in a straightforward way.

As noted previously, cross validation is a completely general technique that can
be applied regardless of the model class or loss function being used.

In particular, K-fold CV can be used in exactly the same way for evaluation and
selection of classifiers with any chosen loss criterion (e.g., 0-1 loss).



False positives and false negatives



Example: Fraud detection

Suppose that you are asked to build a fraud detection algorithm for PayPal.

Data: Transactions, including account info, profile info, etc. of both parties, as
well as amount and type of transaction

Outcomes: For each transaction, either zero (not fraud) or one (fraud)
Suppose: 0.3% of transactions are fraud.

Your job: build a “good” classifier. Is accuracy the right objective?
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Beyond accuracy
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Because of the issue identified in the preceding example, we should distinguish
between misclassification of positive samples and negative samples.

For this purpose we typically use the confusion matrix of a classifier on a test set.”

Here:

Predicted
0 1 Total
=] O N FP | TN+FP
21 FN TP | FN+TP
< [Total [TN+FN TP+FP| n

P TN = # of true negatives; FP = # of false positives

P FN = # of false negatives; TP = # of true positives

'Be careful! One source of “confusion” about confusion matrices is that sometimes the truth
indexes the rows, and sometimes the truth indexes the columns.



Confusion matrices

How to interpret confusion matrices:
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Other metrics
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Nearly every metric of interest in binary classification can be derived from
confusion matrices:

> Accuracy = (TP + TN)/n.

P Mean 0-1 loss = (FP + FN)/n = 1 — accuracy.

P> True positive rate (TPR) = TP/(FN + TP).

P> False positive rate (FPR) = FP/(TN + FP).

» True negative rate (TNR) = TN/(TN + FP).

P> False negative rate (FNR) = FN/(FN + TP).

P Sensitivity = TPR.

P Specificity = TNR.

B Precision = TP/(TP + FP).

P> Recall = sensitivity = TPR.

P Typelerror rate = FPR.

P Type Il error rate = FNR.

P> False discovery rate = FP/(TP + FP)



False positives and false negatives

Except for accuracy and 0-1 loss, all these metrics are just different ways of
measuring the two kinds of error that can be made by the classifier:

1. Misclassifying a true negative example as a positive (false positive, or Type |
error).

2. Misclassifying a true positive example as a negative (false negative, or Type
Il error).
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A tradeoff
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Note that:

1. Itis easy to design a classifier with no false positives. (How?)

2. Itis easy to design a classifier with no false negatives. (How?)
On the other hand, in general there is “no free lunch”: itis generally not possible
to ensure both no false positives and no false negatives.

In general, for "good” classifiers, reducing false positives comes at the expense
of increasing false negatives.

Therefore in designing a classifier it is important to consider which type of error
is more consequential to you.?

2Note that this sometimes leads to objectives that are weighted sums of the entries of the
confusion matrix.



Example: Fraud detection

As an example, suppose that you build a classifier for fraud detection on a
dataset with n = 50, 000 with the following confusion matrix:

Predicted
Not Fraud Fraud | Total
Not Fraud 49,603 247 49, 850
Fraud 22 128 150
Total 49,625 375 50,000

Actual
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Example: Fraud detection

As an example, suppose that you build a classifier for fraud detection on a
dataset with n = 50, 000 with the following confusion matrix:

Predicted
Not Fraud Fraud | Total
Not Fraud 49,603 247 49, 850
Fraud 22 128 150
Total 49,625 375 50,000

Actual

P> Note that this classifier has lower accuracy than one that just always predicts
“Not Fraud.”

P> Would you use this classifier? What if reducing the false negatives to zero
also meant increasing false positives to ~ 1000?

17729



Example: Fraud detection

Analysis:
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An example: k-nearest-neighbor classification



k-nearest-neighbor classification

Basic version:
P> Given a covariate vector X, find the k nearest neighbors.
P Take a majority vote to determine the classification.®
k-NN is an example of an instance-based learning algorithm
(or "lazy” algorithm):

Computation is done at the time a new prediction is made (the “instance”).

3Ties are typically broken at random among the furthest neighbors, or just by choosing k odd.
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Adding a threshold

More generally, let NN(k, L) denote the k-nearest neighbor algorithm with a
threshold L:

P> Require at least L of the k nearest neighbors to have label 1 to assign label
1; otherwise assign label 0.

P> Basic algorithm corresponds to NN(k, k/2).
P What happens if L = 0?
P What happens if L > k?
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Example: The CORIS dataset

462 South African males evaluated for heart disease.
OQutcome variable: Coronary heart disease (chd).

Covariates:
P> Systolic blood pressure (sbp)
P Cumulative tobacco use (tobacco)
P LDL cholesterol (1d1)
P Adiposity (adiposity)
P> Family history of heart disease (famhist)
P Type A behavior (typea)
P Obesity (obesity)
P> Current alcohol consumption (alcohol)
P Age (age)
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Example: The CORIS dataset

Steps:
P Import the data
P> (Random) split into train and test
P Train NN(k, L) for range of k, and for L = ak, a € [0, 1.05]
P Record TP,FP, TN, FN on test set.
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Example: The CORIS dataset

Prediction error (0-1 loss) on test set with threshold L = 0.34:

0.6-

Average 0-1 Loss on Test Set

0.0-
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Example: The CORIS dataset

FPR vs. TPR for the choice k = 20, as threshold L/k varies:
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The ROC curve
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The graph of FPR vs. TPR as the classifier’s threshold is varied is called the ROC
curve (for "receiver operating characteristic”).

The area under the curve (AUC) is often reported as a measure of the quality of
the classifier:

P> Better classifiers are further “up and to the left” in the graph.

P A perfect classifier would have zero FPR and unit TPR = top left corner.

P Therefore a perfect classifier should have AUC 1.

P> The closer the AUC is to 1, the better the classifier is on both types of errors.



More on ROC curves
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Appendix: The Bayes classifier [ ]



Optimal prediction [+]

In regression, we saw that if we knew the population model, then the
squared-error-minimizing prediction was the conditional expectation of the
outcome given the covariates.

What is the analogue of conditional expectation for classification with 0-7 loss as
the objective?

27/29



The Bayes classifier [«]

Suppose we want to minimize 0-1 loss (i.e., maximize accuracy). Note that:
Ey Y # OO} X] =Py (Y # F0IX).

How do we minimize this?

P> If Y is more likely to be O than 1 (given X), then we should set £(X) = 0; and
vice versa.

P> In other words: If Py (Y = 01X) > 1/2, set £(X) = 0; otherwise if
Py(Y = 1]X) > 1/2, set f(X) = 1.
This is called the Bayes classifier.
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The Bayes classifier [«]
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The Bayes classifier is unattainable as a predictive model, for the same reason
the conditional expectation is unattainable: we don’t know the population
model.

In general, good classification models (with respect to 0-1 loss) are those that
approximate the Bayes classifier well.

This observation serves as a foundation for starting to think about analogs of
"bias” and “variance” in the context of classification.
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