
MS&E 226: Fundamentals of Data Science
Lecture 6: An optimization view of learning algorithms

Ramesh Johari

1/52

Learning algorithms: An optimization view

Examples of learning algorithms

Recall that a learning algorithm is a procedure that takes as input training data
(𝐗train,𝐘train), and produces as output a fitted model ̂𝑓 .
Examples we’ve seen include OLS linear regression; ridge regression; and lasso.
Where do learning algorithms come from?

2/52

OLS as an optimization problem

Recall that OLS solves an optimization problem:
“Find the coefficient vector ̂𝜷 that minimizes the sumof squared errors

(SSE) on the training data (𝐗train,𝐘train).”
Similarly for ridge regression and lasso. (What are the corresponding
optimization problems?)

3/52

An optimization view

In general, for both regression and classification problems, many learning
algorithms work as follows (in fact the vast majority!):
▶ Define a family ofmodels in terms of a collection of parameters (e.g., for

OLS, linear models with coefficients on the features)
▶ Define an objective to optimize (often written in terms of a training loss to

minimize, e.g., sum of squared errors for OLS)
▶ Solve the resulting optimization problem for the optimal parameters (i.e.,

OLS coefficients)
In this lecture we’ll discuss some other examples of this approach.

4/52

Maximum likelihood estimation

Overview

The basic idea behind this optimization approach:
1. Distributional assumption: “Pretend” that the data came from a probability

distribution with a known structure, but unknown parameters.

2. Likelihood computation: For each choice of parameters, compute the
chance of seeing the training data, given a particular value of the
parameters.

3. Optimization: Pick the parameter values that maximize the likelihood.
Learning algorithms that work this way are calledmaximum likelihood estimators
(MLE).

5/52

Overview

The basic idea behind this optimization approach:
1. Distributional assumption: “Pretend” that the data came from a probability

distribution with a known structure, but unknown parameters.
2. Likelihood computation: For each choice of parameters, compute the

chance of seeing the training data, given a particular value of the
parameters.

3. Optimization: Pick the parameter values that maximize the likelihood.
Learning algorithms that work this way are calledmaximum likelihood estimators
(MLE).

5/52

Overview

The basic idea behind this optimization approach:
1. Distributional assumption: “Pretend” that the data came from a probability

distribution with a known structure, but unknown parameters.
2. Likelihood computation: For each choice of parameters, compute the

chance of seeing the training data, given a particular value of the
parameters.

3. Optimization: Pick the parameter values that maximize the likelihood.

Learning algorithms that work this way are calledmaximum likelihood estimators
(MLE).

5/52

Overview

The basic idea behind this optimization approach:
1. Distributional assumption: “Pretend” that the data came from a probability

distribution with a known structure, but unknown parameters.
2. Likelihood computation: For each choice of parameters, compute the

chance of seeing the training data, given a particular value of the
parameters.

3. Optimization: Pick the parameter values that maximize the likelihood.
Learning algorithms that work this way are calledmaximum likelihood estimators
(MLE).

5/52

OLS is a maximum likelihood estimator

It turns out that OLS is a maximum likelihood estimator.
Training data: 𝑛 observations 𝑌𝑖, 𝑖 = 1, … , 𝑛, with associated 𝑝-dimensional
covariate vectors 𝐗𝑖 = (𝑋𝑖1, … , 𝑋𝑖𝑝), 𝑖 = 1, … 𝑛.
We’ll work through each of the three steps in turn.

6/52

OLS step 1: Distributional assumption

We “pretend” (assume) the 𝑌𝑖 came from a linear normal population model with
i.i.d. errors:

𝑌𝑖 =
𝑝

∑
𝑖=𝑗

𝛽𝑗𝑋𝑖𝑗 + 𝜖𝑖,

where 𝜖𝑖 ∼ 𝒩 (0, 𝜎2), and the 𝜖𝑖 are i.i.d.
Note that we treat 𝐗 as given; i.e., we focus on the distribution of 𝐘 given 𝐗,
rather also modeling 𝐗 as random.
The parameters are 𝛽1, … , 𝛽𝑝, as well as 𝜎2.

7/52

OLS step 2: Likelihood computation

Likelihood is probability density (pdf) of seeing 𝐘, given parameters and 𝐗:

𝑓(𝐘|𝜷, 𝜎2,𝐗) =
𝑛

∏
𝑖=1 (

1
√2𝜋𝜎2)

exp
⎛
⎜
⎜
⎜
⎝

−
(𝑌𝑖 − ∑𝑝

𝑗=1 𝛽𝑗𝑋𝑖𝑗)
2

2𝜎2

⎞
⎟
⎟
⎟
⎠

.

(Recall that observations in the sample are assumed to be independent of each
other.)

8/52

In general: Parametric likelihood

In general, suppose there is some process that generates 𝐘.
Suppose each choice of a parameter vector 𝜽 gives rise to a conditional pmf (or
pdf) 𝑓(𝐘|𝜽).1

This is the probability (or density) of seeing 𝐘, given parameters 𝜽.
We call this the likelihood of 𝐘 given 𝜽.

1As noted on the previous slide, in the case of regression, we also treat 𝐗 as given and look at
𝑓(𝐘|𝜽,𝐗).

9/52

Log likelihood

It is often easier to work with logarithm of likelihood:

▶ Converts a product into a sum, which is convenient for optimization
▶ Multiplying many small probabilities together can cause numerical

instability
We call this the log likelihood function (LLF).
LLF for linear normal population model):

log 𝑓(𝐘|𝜷, 𝜎2,𝐗) = −𝑛
2 log(2𝜋𝜎2) − 1

2𝜎2

𝑛

∑
𝑖=1

⎛
⎜
⎜
⎝
𝑌𝑖 −

𝑝

∑
𝑗=1

𝛽𝑗𝑋𝑖𝑗
⎞
⎟
⎟
⎠

2

.

10/52

Maximum likelihood estimation

Themaximum likelihood estimate (MLE) is the parameter value that maximizes
the likelihood.
It is found by solving the following optimization problem:

maximize 𝑓(𝐘|𝜽) (or log 𝑓(𝐘|𝜽))
over feasible choices of 𝜽.

11/52

OLS step 3: Maximizing likelihood (known 𝜎2)

Suppose that 𝜎2 is known, so the optimization is only over coefficients 𝜷.
Returning to LLF, our problem is equivalent to choosing 𝜷̂ to minimize:

minimize
𝑛

∑
𝑖=1

⎛
⎜
⎜
⎝
𝑌𝑖 −

𝑝

∑
𝑗=1

̂𝛽𝑗𝑋𝑖𝑗
⎞
⎟
⎟
⎠

2

.

In other words: the OLS solution is the MLE estimate of the coefficients!

12/52

OLS step 3: Maximizing likelihood (known 𝜎2)

Suppose that 𝜎2 is known, so the optimization is only over coefficients 𝜷.
Returning to LLF, our problem is equivalent to choosing 𝜷̂ to minimize:

minimize
𝑛

∑
𝑖=1

⎛
⎜
⎜
⎝
𝑌𝑖 −

𝑝

∑
𝑗=1

̂𝛽𝑗𝑋𝑖𝑗
⎞
⎟
⎟
⎠

2

.

In other words: the OLS solution is the MLE estimate of the coefficients!

12/52

OLS step 3: Maximizing likelihood (unknown 𝜎2)

What happens if 𝜎2 is unknown?
The MLE for 𝜷 remains unchanged (the OLS solution), and the MLE estimate for
𝜎2 is:

𝜎̂2
MLE = 1

𝑛

𝑛

∑
𝑖=1

⎛
⎜
⎜
⎝
𝑌𝑖 −

𝑝

∑
𝑗=1

̂𝛽𝑗𝑋𝑖𝑗
⎞
⎟
⎟
⎠

2

= 1
𝑛

𝑛

∑
𝑖=1

𝑟2
𝑖 .

This is intuitive: the sum of squared residuals is an estimate of the variance of
the error.

13/52

“Interpretability”

Maximum likelihood estimation is a powerful technique for building
“interpretable” predictive models:
One interpretation of MLE is to view the parameters as determining a
“reasonable” approximation to the true data-generating distribution.
The extent to which this view is “reasonable” depends on whether or not you
believe the distributional assumptions of your particular MLE in your context.
E.g.: Do you in fact believe that the data you obtained came from a linear
normal population model?

14/52

An MLE for classification:
Logistic regression

Logistic regression

At its core, logistic regression is a learning algorithm for binary classification that
works as follows:
Input: Sample data 𝐗 and 𝐘.
Output: A fitted model ̂𝑓 (⋅), where we interpret ̂𝑓 (𝑋⃗) as an estimate of the
probability that the corresponding outcome 𝑌 is equal to 1.
To convert this to a classifier, we choose a threshold 𝑡, and return 1 if ̂𝑓 (𝑋⃗) > 𝑡)
(resp., return 0 if ̂𝑓 (𝑋⃗ < 𝑡)). (Ties can be broken in any way you like.)

15/52

Logistic regression step 1: Distributional assumption

Suppose we have training data (𝐗,𝐘), with binary 𝑌𝑖 ∈ {0, 1}.
We “pretend” the 𝑌𝑖 came from a logistic population model with coefficients 𝜷:

ℙ(𝑌 = 1|𝑋⃗) = exp(𝑋⃗𝜷)
1 + exp(𝑋⃗𝜷)

= 1 − ℙ(𝑌 = 0|𝑋⃗).

Note that 𝑋⃗𝜷 = ∑𝑝
𝑗=1 𝛽𝑗𝑋𝑗 .

16/52

Logistic curve (Sigmoid function)
The function 𝑔 given by 𝑔(𝑥) = 𝑒𝑧/(1 + 𝑒𝑧) is called the logistic curve
or sigmoid function.

In terms of 𝑔, we can write the population model as:2

ℙ(𝑌 = 1|𝑋⃗) = 𝑔(𝑋⃗𝜷).
2This is one example of a generalized linear model (GLM); for a GLM, 𝑔−1 is called the link

function.
17/52

Logistic curve (Sigmoid function)

Note that from this curve we see some important characteristics of logistic
regression:

▶ The logistic curve is increasing. Therefore, in logistic regression, larger
values of covariates that have positive coefficients will tend to increase the
probability that 𝑌 = 1.

▶ When 𝑧 > 0, then 𝑔(𝑧) > 1/2; when 𝑧 < 0, then 𝑔(𝑧) < 1/2.
Therefore, when 𝑋⃗𝜷 > 0, 𝑌 is more likely to be one than zero; and
conversely, when 𝑋⃗𝜷 < 0, 𝑌 is more likely to be zero than one.

See the appendix for some motivations for the logistic population model.

18/52

Logistic curve (Sigmoid function)

Note that from this curve we see some important characteristics of logistic
regression:

▶ The logistic curve is increasing. Therefore, in logistic regression, larger
values of covariates that have positive coefficients will tend to increase the
probability that 𝑌 = 1.

▶ When 𝑧 > 0, then 𝑔(𝑧) > 1/2; when 𝑧 < 0, then 𝑔(𝑧) < 1/2.
Therefore, when 𝑋⃗𝜷 > 0, 𝑌 is more likely to be one than zero; and
conversely, when 𝑋⃗𝜷 < 0, 𝑌 is more likely to be zero than one.

See the appendix for some motivations for the logistic population model.

18/52

Logistic regression step 2: Likelihood computation

The (conditional) likelihood for 𝐘 given 𝐗 and parameters 𝜷 is:

ℙ(𝐘|𝜷,𝐗) =
𝑛

∏
𝑖=1

𝑔(𝐗𝑖𝜷)𝑌𝑖(1 − 𝑔(𝐗𝑖𝜷))1−𝑌𝑖

where 𝑔(𝑧) = exp(𝑧)/(1 + exp(𝑧)), and 𝐗𝑖 is the 𝑖’th feature vector in the training
sample.
The negation of the LLF for logistic regression is also referred to as log loss or
cross-entropy loss (see problem set); maximizing likelihood is equivalent to
minimizing log loss.

19/52

Logistic regression step 3: Maximum likelihood
Let 𝜷̂MLE be the resulting MLE solution; these are the logistic regression
coefficients.
Unfortunately, in contrast to our previous examples, maximum likelihood
estimation does not have a closed form solution in the case of logistic
regression.
However, there are reasonably efficient iterative methods for algorithmically
computing the MLE solution.3

One example is an algorithm inspired by weighted least squares, called
iteratively reweighted least squares. This algorithm iteratively updates the
weights in weighted least squares to converge to the logistic regression MLE
solution.

3The MLE optimization problem turns out to be convex, which is what enables such a
procedure.

20/52

Logistic regression in R
To run logistic regression in R, we use the glm function.
Example on the CORIS dataset:

> fm = glm(formula = chd ~ .,
family = "binomial",
data = coris)

> display(fm)
coef.est ...

(Intercept) -6.15 ...
...
famhist 0.93 ...
...
obesity -0.06 ...
...

21/52

Interpreting the output

Recall that if a coefficient is positive, it increases the probability that the outcome
is 1 in the fitted model (since the logistic curve is increasing).
So, for example, obesity has a negative coefficient. What does this mean? Do
you believe the implication?

22/52

The “divide by 4” rule

By differentating 𝑔(𝑋⃗𝜷̂), we find that the change in the (fitted) probability 𝑌 = 1
per unit change in 𝑋𝑗 is:

(
exp(𝑋⃗𝜷)

[1 + exp(𝑋⃗𝜷)]2)
̂𝛽𝑗 .

Note that the term in parentheses cannot be any larger than 1/4.
Therefore, | ̂𝛽𝑗|/4 is an upper bound on the magnitude of the change in the fitted
probability that 𝑌 = 1, per unit change in 𝑋𝑗 .

23/52

Classification

Logistic regression serves as a classifier in the following natural way:
▶ Given the estimated coefficients 𝜷̂, and a new covariate vector 𝑋⃗, compute

𝑔(𝑋⃗𝜷̂).

▶ If the resulting value is > 1/2 (equivalently, if 𝑋⃗𝜷̂ > 0), return 𝑌 = 1 as the
predicted value.

▶ If the resulting value is < 1/2 (equivalently, if 𝑋⃗𝜷̂ < 0), return 𝑌 = 0 as the
predicted value.

(Note that logistic regression is an example of a linear classifier: the boundary
between covariate vectors where we predict 𝑌 = 1 (resp., 𝑌 = 0) is linear.)

24/52

Classification

Logistic regression serves as a classifier in the following natural way:
▶ Given the estimated coefficients 𝜷̂, and a new covariate vector 𝑋⃗, compute

𝑔(𝑋⃗𝜷̂).
▶ If the resulting value is > 1/2 (equivalently, if 𝑋⃗𝜷̂ > 0), return 𝑌 = 1 as the

predicted value.

▶ If the resulting value is < 1/2 (equivalently, if 𝑋⃗𝜷̂ < 0), return 𝑌 = 0 as the
predicted value.

(Note that logistic regression is an example of a linear classifier: the boundary
between covariate vectors where we predict 𝑌 = 1 (resp., 𝑌 = 0) is linear.)

24/52

Classification

Logistic regression serves as a classifier in the following natural way:
▶ Given the estimated coefficients 𝜷̂, and a new covariate vector 𝑋⃗, compute

𝑔(𝑋⃗𝜷̂).
▶ If the resulting value is > 1/2 (equivalently, if 𝑋⃗𝜷̂ > 0), return 𝑌 = 1 as the

predicted value.
▶ If the resulting value is < 1/2 (equivalently, if 𝑋⃗𝜷̂ < 0), return 𝑌 = 0 as the

predicted value.
(Note that logistic regression is an example of a linear classifier: the boundary
between covariate vectors where we predict 𝑌 = 1 (resp., 𝑌 = 0) is linear.)

24/52

Tuning logistic regression

As with other classifiers, we can tune logistic regression to trade off false
positives and false negatives.
In particular, suppose we choose a threshold 0 < 𝑡 < 1, and predict 𝑌 = 1
whenever 𝑔(𝑋⃗𝜷̂) > 𝑡.
▶ When 𝑡 = 0, we recover the classification rule on the preceding slide. This is

the rule that minimizes average 0-1 loss on the training data.
▶ What happens to our classifier when 𝑡 → ∞?
▶ What happens to our classifier when 𝑡 → −∞
As usual, you can plot an ROC curve for the resulting family of classifiers as 𝑡
varies.

25/52

Regularized logistic regression

As with linear regression, regularized logistic regression is often used in the
presence of many features.
In practice, the most common regularization technique is to add the penalty
−𝜆 ∑𝑗 | ̂𝛽𝑗| to the maximum log likelihood problem; this is the equivalent of lasso
for logistic regression.
As for linear regression, this penalty has the effect of selecting a subset of the
parameters (for sufficient large values of the regularization penalty 𝜆).

26/52

Neural networks and gradient descent

From linear to nonlinear models

So far we’ve seen learning algorithms that produce linearmodels:
▶ OLS: Fitted values are linear in covariates
▶ Logistic regression: Resulting classifier is linear

What if the true relationship between 𝐗 and 𝑌 is nonlinear?
Neural networks provide a natural extension to capture nonlinear relationships.

27/52

From linear to nonlinear models

So far we’ve seen learning algorithms that produce linearmodels:
▶ OLS: Fitted values are linear in covariates
▶ Logistic regression: Resulting classifier is linear
What if the true relationship between 𝐗 and 𝑌 is nonlinear?

Neural networks provide a natural extension to capture nonlinear relationships.

27/52

From linear to nonlinear models

So far we’ve seen learning algorithms that produce linearmodels:
▶ OLS: Fitted values are linear in covariates
▶ Logistic regression: Resulting classifier is linear
What if the true relationship between 𝐗 and 𝑌 is nonlinear?
Neural networks provide a natural extension to capture nonlinear relationships.

27/52

Logistic regression as a one-layer neural network

To give a sense of how neural networks
are constructed for classification, we
recast logistic regression as a one-layer
neural network (with sigmoid activation
function):
Given weights 𝜷, the inputs (the feature
vector) 𝑋⃗ are mapped to output 𝑓(𝑋⃗)
according to:

𝑓(𝑋⃗) = 𝑔(𝑋⃗𝜷).

𝑋1

𝑋2

𝑋3

⋮

𝑋𝑝

𝑔(⋅)

𝛽1
𝛽2
𝛽3

𝛽𝑝

𝑓(𝑋⃗)

Input

Output

𝑦 = 𝑔 (∑𝑝
𝑗=1 𝛽𝑗𝑋𝑗)

28/52

Adding layers: Architecture
We can build more complex, nonlinear
relationships between features 𝑋⃗ and
the outcome by repeating this
approach.
E.g., a simple two-layer network with 𝑘
hidden nodes:

▶ Input layer: Features
𝑋⃗ = (𝑋1, … , 𝑋𝑝)

▶ Hidden layer: 𝑘 nodes, each
computing 𝑔(⋅)

▶ Output layer: Single node
computing 𝑔(⋅)

𝑋1

𝑋2

⋮

𝑋𝑝

𝑔

𝑔

𝑔

⋮

𝑔

𝑔 𝑓(𝑋⃗)

Input
Hidden

Output

W(1)

𝜷 (2)

29/52

Adding layers: Mathematical formulation
Hidden layer: Each hidden node 𝑗 = 1, … , 𝑘 computes

ℎ𝑗 = 𝑔(
𝑝

∑
𝑖=1

𝑊 (1)
𝑗𝑖 𝑋𝑖 + 𝑏(1)

𝑗),

where 𝑊 (1)
𝑗𝑖 is the weight from input 𝑋𝑖 to node 𝑗.

In vector form: 𝐡 = 𝑔(W(1)𝑋⃗ + 𝐛(1)), where W(1) is a 𝑘 × 𝑝 matrix.
Output layer: The output node computes

𝑓(𝑋⃗) = 𝑔(
𝑘

∑
𝑗=1

𝛽(2)
𝑗 ℎ𝑗 + 𝑏(2)

) = 𝑔(𝜷(2)⊤𝐡 + 𝑏(2)).

The constants 𝐛(1) and 𝑏(2) are bias terms – analogous to intercept terms.
30/52

Fitting neural networks via optimization

Neural network parameters are 𝜽 = (W(1),𝐛(1), 𝜷(2), 𝑏(2)) (weights and bias terms).
We write 𝑓(𝑋⃗|𝜽) for the output given parameters 𝜽.
We again interpret 𝑓(𝑋⃗;𝜽) as a “probability” that 𝑌 = 1.
The parameters are optimized so that a target loss function is minimized; e.g, a
common choice for classification is actually the log loss:

Choose 𝜽̂ to minimize −
𝑛

∑
𝑖=1

[𝑌𝑖 log 𝑓(𝐗𝑖;𝜽) + (1 − 𝑌𝑖) log(1 − 𝑓(𝐗𝑖;𝜽))].

In the case of a single layer network, this reduces exactly to fitting logistic
regression by maximum likelihood.

31/52

Fitting neural networks via optimization

Neural network parameters are 𝜽 = (W(1),𝐛(1), 𝜷(2), 𝑏(2)) (weights and bias terms).
We write 𝑓(𝑋⃗|𝜽) for the output given parameters 𝜽.
We again interpret 𝑓(𝑋⃗;𝜽) as a “probability” that 𝑌 = 1.
The parameters are optimized so that a target loss function is minimized; e.g, a
common choice for classification is actually the log loss:

Choose 𝜽̂ to minimize −
𝑛

∑
𝑖=1

[𝑌𝑖 log 𝑓(𝐗𝑖;𝜽) + (1 − 𝑌𝑖) log(1 − 𝑓(𝐗𝑖;𝜽))].

In the case of a single layer network, this reduces exactly to fitting logistic
regression by maximum likelihood.

31/52

The challenge: Non-convex optimization [∗]

Like logistic regression, no closed-form solution exists.
However, unlike logistic regression, fitting neural networks is a non-convex
optimization problem in general.

▶ Multiple local minima and “saddle points”
▶ No guarantee of finding the global optimum (i.e., global loss-minimizing

choice of parameters)
This is fundamentally different from the convex problems we’ve seen before.

32/52

Gradient descent algorithm [∗]

Basic idea: “Roll a ball downhill” to find the bottom of the loss surface.
Algorithm: Start with random parameters, then repeatedly update:

𝜽𝑡+1 = 𝜽𝑡 − 𝛼 × gradient of training loss at 𝜽𝑡

where:
▶ 𝜽𝑡 = parameters at iteration 𝑡
▶ 𝛼 = learning rate (step size)
Intuition: Move in the direction of steepest descent.

33/52

Backpropagation [∗]

Challenge: How do we compute gradients efficiently through multiple layers?
Solution: Backpropagation: Use the chain rule to compute gradients layer by
layer.
This algorithmic breakthrough made training deep neural networks practical.

34/52

Wide application

Neural networks can be made “deeper” by adding more layers.
More layers ⟹ more parameters ⟹ greater computational cost.
Neural networks have proven incredibly successful for a wide range of
applications over the last two decades, including not only classification
problems but also regression problems (e.g., using MSE as the training loss).
Note: In contrast to linear and logistic regression, there is no “simple”
interpretation of the parameters!

35/52

Neural networks: R and Python [∗]

Python is the language of choice for neural networks, with a number of widely
adopted packages (notably, PyTorch, TensorFlow, and Keras).
In R, you can use the torch package for an R native library for building deep
neural networks.

36/52

Tree-based methods and discrete optimization

Decision trees: A different approach to prediction

Decision trees are an interpretable
approach to prediction that also handle
non-linear relationships naturally.
Basic idea: Partition the feature space
using a series of binary splits, creating a
tree-like structure.

▶ Internal nodes: Represent
decisions

▶ Branches: Represent outcomes
(Yes/No)

▶ Leaf nodes: Contain predictions

Example for CORIS data:

ldl > 4.0?

famhist = 1?

chd = 1 chd = 0

chd = 0

Yes No

Yes
No

37/52

A different optimization paradigm [∗]

In contrast to maximum likelihood and neural networks, tree-based methods
involve discrete/combinatorial optimization:

▶ Discrete choices (which feature(s) to split on;
what levels to split on, for factors)

▶ No derivatives available
▶ Different mathematical tools needed

38/52

“Greedy” optimization for decision trees

Typical algorithm (e.g., the CART algorithm): Build the tree one binary split at a
time, choosing the “best” split at each step (according to a chosen training loss).
Best split: The one that minimizes loss function given the split.
“Greedy” choice: Locally optimal choice of split at each step, but resulting tree is
not necessarily globally optimal.
Why greedy? Full optimization over all possible trees is computationally
intractable.
See problem set to learn more.

39/52

Ensemble methods: Combining multiple trees

Individual decision trees can be prone to overfitting. Ensemble methods
combine multiple trees to improve prediction:
Key examples:
▶ Random forests: Train many trees on different subsets of data and features,

then average their predictions
(“Wisdom of crowds”: averaging predictions from multiple models often
works better than any single model)

▶ Gradient boosting: Train trees sequentially, with each new tree correcting
errors from previous trees

These methods typically achieve much better prediction accuracy than single
trees.

40/52

Gradient boosting as optimization

Intuitive idea: Like learning to hit a bullseye – your first shot misses, so you look
at where you missed and aim to correct that specific error with your next shot.
Each new tree focuses on fixing the mistakes of all previous trees combined.
Example:
▶ Suppose true values: (𝑌1, 𝑌2, 𝑌3) = [3, 5, 3]
▶ Tree 1 predicts: [2, 4, 1]
▶ Residuals (errors): [3 − 2, 5 − 4, 3 − 1] = [1, 1, 2]

▶ Tree 2 learns to predict these residuals,
and predicts: [0.8, 0.9, 1.7]

▶ Combined prediction: [2, 4, 1] + [0.8, 0.9, 1.7] = [2.8, 4.9, 2.7]
⟹ closer to true values

41/52

Gradient boosting as optimization

Intuitive idea: Like learning to hit a bullseye – your first shot misses, so you look
at where you missed and aim to correct that specific error with your next shot.
Each new tree focuses on fixing the mistakes of all previous trees combined.
Example:
▶ Suppose true values: (𝑌1, 𝑌2, 𝑌3) = [3, 5, 3]
▶ Tree 1 predicts: [2, 4, 1]
▶ Residuals (errors): [3 − 2, 5 − 4, 3 − 1] = [1, 1, 2]
▶ Tree 2 learns to predict these residuals,

and predicts: [0.8, 0.9, 1.7]

▶ Combined prediction: [2, 4, 1] + [0.8, 0.9, 1.7] = [2.8, 4.9, 2.7]
⟹ closer to true values

41/52

Gradient boosting as optimization

Intuitive idea: Like learning to hit a bullseye – your first shot misses, so you look
at where you missed and aim to correct that specific error with your next shot.
Each new tree focuses on fixing the mistakes of all previous trees combined.
Example:
▶ Suppose true values: (𝑌1, 𝑌2, 𝑌3) = [3, 5, 3]
▶ Tree 1 predicts: [2, 4, 1]
▶ Residuals (errors): [3 − 2, 5 − 4, 3 − 1] = [1, 1, 2]
▶ Tree 2 learns to predict these residuals,

and predicts: [0.8, 0.9, 1.7]
▶ Combined prediction: [2, 4, 1] + [0.8, 0.9, 1.7] = [2.8, 4.9, 2.7]

⟹ closer to true values

41/52

Gradient boosting as optimization [∗]

Suppose ̂𝑓 (𝑘)(𝑋⃗) denotes the prediction made by the 𝑘’th tree built.

Compute the residuals ̂𝑟(𝑘)
𝑖 = 𝑌𝑖 − ̂𝑓 (𝑘)(𝐗𝑖).

Build a tree ℎ̂(𝑘) to predict the residuals, using features 𝐗.
“Move” predictions in the direction of the new tree:

̂𝑓 (𝑘+1)(𝑋⃗) = ̂𝑓 (𝑘)(𝑋⃗) + 𝛼 ⋅ ℎ(𝑘)(𝑋⃗)

where 𝛼 > 0 is a parameter that governs how fast predictions are adjusted.

42/52

XGBoost [∗]

Many successful machine learning approaches involves similar approaches to
building high performance tree-based predictive models.
XGBoost (eXtreme Gradient Boost) is one such model that has enjoyed wide
practical success across numerous applications for both classification and
regression. Try it on your project!

43/52

Tree-based methods: R and Python [∗]

In R, rpart, ranger, gbm can be used for decision trees, random forests, and
gradient boosted trees, respectively.
In Python, all three are available through scikit-learn.
XGBoost is available as the xgboost package for both R and Python.

44/52

Comparing optimization approaches

Three optimization paradigms [∗]

Three different approaches:

1. Convex optimization: OLS, logistic regression
▶ Global optimum guaranteed
▶ Often closed-form solutions available

2. Non-convex smooth optimization: Neural networks
▶ Local optima, no global guarantee
▶ Iterative methods

3. Discrete/combinatorial optimization: Trees
▶ Greedy heuristics
▶ NP-hard optimization problems
▶ Ensemble methods

45/52

Computational trade-offs

Different algorithms have very different computational requirements; in general:

▶ OLS, logistic regression, and single decision trees are relatively fast to train
▶ Ensemble tree methods (random forests, gradient boosting) are slower

depending on how many trees are trained
▶ Neural networks are typically slowest to train when used with many layers
(Of course, exact performance is context-dependent!)

46/52

Sample size trade-offs

The “best” algorithm depends heavily on your training sample size:
More complex models (neural networks, ensemble tree-based methods) have
many more parameters,
and can overfit the training data when there are not enough training data points.
Linear methods, particularly with regularization, can be surprisingly powerful,
even for large datasets.
On very large datasets, ensemble methods and neural networks, as well as their
variants have been key drivers of the remarkable performance of machine
learning for prediction.

47/52

The interpretability spectrum

Note that for OLS, logistic regression, and decision trees, it is straightforward to
interpret the fitted model to understand how predictions are made given
features.
By contrast, interpretation is not straightforward for the other methods:
▶ Neural networks: Complex nonlinear transformations through hidden layers
▶ Random forests: Averaging many trees obscures individual decisions
▶ Gradient boosting: Sequential corrections difficult to interpret

48/52

The bigger picture

All learning algorithms involve optimization, but they make different trade-offs.
There is no “best” algorithm – there are tradeoffs depending on:
▶ Computational constraints (time, resources)
▶ Size of training sample
▶ Interpretation of predictions

49/52

Appendix: Motivating the logistic population model
[∗]

Linearity of log odds ratio [∗]

In these slides we’ll talk about a few different motivations for the logistic
population model that underlies logistic regression.
One way to interpret the model:
▶ Note that given a probability 0 < 𝑞 < 1, 𝑞/(1 − 𝑞) is called the odds ratio. The

odds ratio lies in (0, ∞).
▶ So logistic regression uses a model that suggests the log odds ratio of 𝑌

given 𝑋⃗ is linear in the covariates. Note the log odds ratio lies in (−∞, ∞).

50/52

Latent variables [∗]

Another way to interpret the model is the latent variable approach:
▶ Suppose given a vector of covariates 𝑋⃗, a logistic random variable 𝑍 is

sampled independently:

ℙ(𝑍 < 𝑧) = 𝑔−1(𝑧).

▶ Define 𝑌 = 1 if 𝑋⃗𝜷 > 𝑍, and 𝑌 = 0 otherwise.
▶ By this definition, the event 𝑌 = 1 has probability 𝑔−1(𝑋⃗𝜷) — exactly the

logistic population model.

51/52

Discrete choice modeling [∗]

The latent variable interpretation is particularly popular in econometrics, where
it is a first example of a discrete choice modeling.
For example, in modeling customer choice over whether or not to buy a
product, suppose:
▶ Each customer has a feature vector 𝑋⃗.
▶ This customer’s reservation utility level is 𝑍: The customer purchases the

item if 𝑋⃗𝜷 > 𝑍, and does not purchase otherwise.
▶ The probability the customer purchases the item is exactly the logistic

population model.
This is a very basic example of a random utility model for customer choice.

52/52

	Learning algorithms: An optimization view
	Maximum likelihood estimation
	An MLE for classification: Logistic regression
	Neural networks and gradient descent
	Tree-based methods and discrete optimization
	Comparing optimization approaches
	Appendix: Motivating the logistic population model [*]

