MS&E 226: Fundamentals of Data Science

Lecture 7: The bias-variance decomposition

Ramesh Johari
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Motivation: Evaluating learning algorithms



Evaluation: Fitted models vs. learning algorithms

The validation and test steps of “train-test-validate” show us how to evaluate
fitted models.

But how do we “evaluate” a learning algorithm?

What is a “"good” learning algorithm?
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Good learning algorithms
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In general, when creating learning algorithms,
we are trading off two different goals:

P> On one hand, we want fitted models to fit the training data well.

P On the other hand, we want to avoid fitted models that become so finely
tuned to the training data that they perform poorly on new data.

In this lecture we develop a systematic vocabulary for talking about “good”
learning algorithms, through the notions of bias and variance.



The frequentist approach:
Sampling distributions



An example: NBA rookie points per game (PPG)

Suppose | pick a random NBA (National Basketball Association) rookie from the
five seasons 2020-21 to 2024-25.

What would you guess was this player’s PPG in their rookie year?

(My son’s guess: 10 PPG.)
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An example: NBA rookie points per game (PPG)

Now suppose | give you the rookie year PPG for n = 10 players (the sample),
randomly sampled from all rookies in from 2020-25 (the population).”

The first “learning algorithm” in this course: sample mean.

P Y,.Y,,....Y,o: the PPG of these 10 players

P v = lio 19, the sample mean

"Note: throughout the lecture, “randomly sampled” means each observation is an
independent draw from the entire population.
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The population model

We will suspend disbelief: Assume you don't have access to the whole
population.

In particular, suppose you don't know:

P u: the true mean PPG of all rookies in the 2020-25 seasons
P o%: the true variance of PPG of rookies in the 2020-25 seasons

[ A peek at the truth: u =5.49 PPG, and 6 = 4.31 PPG. ]



The prediction problem

Question: What prediction should we make if we're asked to predict the height
of a player we hadn't seen yet, to minimize squared prediction error?

If we knew the heights of all rookies in the last five years (the full population), we
would report u, the population mean. (See Lecture 2 and Problem Set 1.)
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The prediction problem
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Question: What prediction should we make if we're asked to predict the height
of a player we hadn't seen yet, to minimize squared prediction error?

Note that if we could actually predict u, our expected squared prediction error
would be 67

Ey[(Y — u)*] = Var(Y) = 67,
where Y is the true PPG of the randomly sampled player.
This error is irreducible: We can't do better than this with any other prediction.

But we don't know u. So what might we do?



Two natural approaches

Two simple approaches (“learning algorithms”) we might consider:

1. Guess a constant: Predict 10 PPG (my son’s guess), or some other constant
(what would you guess?).

2. Use the sample mean: Predict Y, the PPG of the 10 players we observed.
Which is "better”?

How does the answer depend on the number of players in our sample?
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Evaluating our approaches

A natural question: What is the MSE of each of these approaches?

In other words:
P> Is “guessing a constant” a “good” idea, i.e., does it generally give low MSE?

P> s “taking the sample mean” a “good” idea, i.e., does it generally give low
MSE?

To evaluate the approaches, we need to think more carefully about what we
mean by “good.”
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Evaluating our approaches
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Recall that we evaluate alternative fitted models by comparing them on a
validation set.

But one fitted model might outperform another for two different reasons:
P> The learning algorithm that produced it is genuinely “better”
P> The particular data sample favored that particular fitted model (“luck”)

We want to evaluate the first, not the second. How do we do this?



Thinking like a frequentist
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Here's an idea: rewind time and imagine resampling 10 players from the full
population, again and again.

Each time we resample, we create a new “parallel universe”:
P We get a new set of 10 heights: Y = (Y], ..., Y;().
P> We make a prediction based on Y, e.g., the sample mean Y.

The key insight: we can evaluate the quality of our approach by imagining its
behavior across many possible “parallel universe” samples.

This is the heart of the frequentist viewpoint.



The sampling distribution

Suppose we execute this thought experiment with the number of parallel
universes — .

We can summarize the results by the distribution of the predictions we obtain,
across “parallel universes.”

This distribution is called the sampling distribution of our approach.

The sampling distribution is the most fundamental concept in frequentist
statistics!
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The sampling distribution: Example

| actually collected all the rookies’ PPG from 2020-25, so | can (approximately)
execute this thought experiment for the sample mean.

Resulting approximate sampling distribution, over 100,000 parallel universes:

0.3 I True mu =5.49

0.0

2.5 5.0 7.5 10.0 12.5
Sample Mean PPG
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Sampling distributions can’t be computed

The sampling distribution is an odd construct:
We can’t compute it if we don't know the population model!

So how is it still a useful construct?

1. We will see that we can qualitatively reason about MSE using the sampling
distribution, even if we can't exactly compute it.

2. We will see later that we can develop quantitative tools that give us insight
into the sampling distribution, even if we can't exactly compute it.

15/74



Using the sampling distribution

How is the sampling distribution specifically helpful in evaluating learning
algorithms?
P It reflects the distribution of predictions Y, across parallel universes.
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Using the sampling distribution

How is the sampling distribution specifically helpful in evaluating learning
algorithms?
P It reflects the distribution of predictions Y, across parallel universes.
P> The average MSE of these predictions is:
Average MSE = Ey y[(¥ - Y)].

Note that this expectation is over both the randomness in the outcome Y,
and the randomness in the training data sample Y.
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Using the sampling distribution

How is the sampling distribution specifically helpful in evaluating learning

algorithms?
P It reflects the distribution of predictions Y, across parallel universes.
P> The average MSE of these predictions is:
Average MSE = Ey y[(¥ - Y)].
Note that this expectation is over both the randomness in the outcome Y,
and the randomness in the training data sample Y.

P> In particular, any “luck” due to a single data sample is averaged out in this
Average MSE = better learning algorithms have lower Average MSE.
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Using the sampling distribution

How is the sampling distribution specifically helpful in evaluating learning
algorithms?
P It reflects the distribution of predictions Y, across parallel universes.
P> The average MSE of these predictions is:
Average MSE = Ey y[(¥ - Y)].
Note that this expectation is over both the randomness in the outcome Y,
and the randomness in the training data sample Y.

P> In particular, any “luck” due to a single data sample is averaged out in this
Average MSE = better learning algorithms have lower Average MSE.

By decomposing Average MSE, we can identify the sources of our prediction

error.

There are two key sources beyond irreducible error: bias and variance.
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The bias-variance decomposition



Bias is the difference between the mean of the sampling distribution and the
actual mean pu:

Bias = Ey[Y] — 4.

If our predictions are systematically too high or too low (on average across
universes), we have bias.

(Note the expectation is once again over the training data sample Y.)
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Variance

The variance of the sampling distribution measures how much the sample mean
varies from universe to universe:

Vary(Y) = Ey [(? - [EY[?]>2] .

If our predictions are highly sensitive to which particular sample we draw across
universes, we have high variance.

Note: The standard deviation of the sampling distribution is called
the standard error (of the sample mean).
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Bias and variance: Example
From the sampling distribution of the sample mean shown earlier

0.3 True mu =5.49

E[Ybar] =5

0.0

25 5.0 7.5

10.0 12.5
Sample Mean PPG

Bias = Ey[Y]— u = 0; Sample SD = y/sample variance = 1.363.
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Bias and variance: Example

In fact, we can exactly compute the bias and variance of the sample mean given
n observations:

. 1 < 1 v
Bias = Ey [;ZYz] _ﬂ=<;Z[EY[Yi]>_M=O;
i=1 i=1

n n 2
Variance = Vary <l Z Y,-) = iz ZVarY(Yi) =2
n n> 4 n
i=1 i=1

So the sample mean is unbiased, and the variance goes down inversely in the
sample size.

(The second result uses the fact that the Y; are independent.)
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Bias and variance: Example

What's the bias and variance of the constant prediction ¢?
Bias = ¢ — u: Systematically wrong.

Variance = zero: Prediction doesn’t vary as data sample changes.
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The bias-variance decomposition

Suppose you have a prediction approach (“learning algorithm”) that,
given the training sample Y, predicts Y for the PPG
of a player with true PPG Y.

The bias-variance decomposition is a fundamental result on the MSE of ¥

Average MSE = [EY,Y[(IA/ ~Y)?]
=02 4+ (Ey[Y] - p)* + Vary(Y)

= Irreducible Error + Bias® + Variance.

Key observation: These are the ONLY contributions to MSE!
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MSE decomposition: Intuition

Bias-variance decomposition:

MSE = 2 + Bias® + Variance

P irreducible error (¢%): Even if we knew u exactly, individual players’ PPGs
vary around u with variance ¢%. We can’t do better than this.

P> Bias?: If our prediction strategy systematically over- or under-predicts PPG
(on average across samples), we pay a price in higher MSE.

P> Variance: If our predictions vary greatly from sample to sample, we pay a
price in higher MSE.
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Comparing the two strategies

Bias-variance decomposition:

MSE = 2 + Bias® + Variance

P Constant guess (¢ PPG): MSE = 62+ (c—u)?+0°

P Sample mean: MSE = 62 + 0 + 6%/n
p

So the sample mean is better if (¢ — u)* > ¢*/n,
i.e., if the sample size is large, and/or our constant prediction is highly biased.
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The general case



The general case

Now suppose we have training data X, Y, and we fit a predictive model f using
a learning algorithm &:

N

Training data X, Y ——— > Learning algorithm & —> ¢

Suppose we use f to make a prediction f(X) at a new feature vector X.

The squared prediction error is (f()?) —Y)?, where Y is the true outcome
associated to X.

We now discuss the bias-variance decomposition for this setting.
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The “best” model: Conditional expectation

Analogous to the previous setting, the best (lowest MSE) prediction we can

make if we had access to the population model is the conditional mean of Y,
given the features X:

[*(X) = Ey[Y|X].
The MSE if we use f* is:

o>(X) = Ey[(Y = f*(X))*|X] = Vary (Y| X).
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The “best” model: Conditional expectation
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The best model we could ever hope foris f = f*, i.e.,
we want a fitted model as close to the conditional mean as possible.

We can't actually make f = f*, because we don’t know the population model!

The generalization error can't ever be lower than 2(X),
the conditional variance of the outcome Y “left over” even if we know X;
this is called the irreducible error.



Sampling distribution of predictions

Bias and variance are defined via the same “parallel universe” simulation that led
to the sampling distribution:

P> Rewind time, and resample the training data X, Y again and again (parallel
universes).

28/74



Sampling distribution of predictions

Bias and variance are defined via the same “parallel universe” simulation that led
to the sampling distribution:

P> Rewind time, and resample the training data X, Y again and again (parallel
universes).

P> In each universe, run & on the sampled X, Y to get a fitted model f.
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Sampling distribution of predictions

Bias and variance are defined via the same “parallel universe” simulation that led
to the sampling distribution:

P> Rewind time, and resample the training data X, Y again and again (parallel
universes).

P> In each universe, run & on the sampled X, Y to get a fitted model f.

P> In each universe, evaluate f(X).
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Sampling distribution of predictions

Bias and variance are defined via the same “parallel universe” simulation that led
to the sampling distribution:

P> Rewind time, and resample the training data X, Y again and again (parallel
universes).

P> In each universe, run & on the sampled X, Y to get a fitted model f.

P> In each universe, evaluate f(X).

This gives rise to a sampling distribution of f(X).
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Average MSE (over sampling distribution)

The resulting average MSE (over these universes) is:

Average MSE at X = Ey x y[(f(X) - Y)?| X].

Note in this expectation both the true outcome Y and the training data X, Y are
random.
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The bias-variance decomposition

Definitions:
Bias = Ex y[/(X)|X] - /*(X);
Variance = Vary y(/ (X1 X) = Exy |(/(¥)  Exy[/(DIXD?] .
The bias-variance decomposition is:

Average MSE at X = 0-2()?) + Bias® + Variance.
As before: These are the ONLY contributions to MSE!
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Examples: Bias and variance

31/74

Suppose you are predicting, e.g., wealth based on a collection of demographic
features.

P> Suppose we make a constant prediction: f(X) = c.

Does this have low bias? Does it have low variance?

} Suppose that every time you get your data, you use enough parameters to
fit Y exactly: f(X;) =Y, for all points in the training data.

Does this have low bias? Does it have low variance?



Example: k-nearest-neighbors

Generate synthetic data:
We generate 1000 X, X, as i.i.d. N(0, 1) random variables.

We then generate 1000 Y random variables as:

where ¢; are i.i.d. N(0,5) random variables.
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Example: k-nearest-neighbors

Using the first 500 points, we create a k-nearest-neighbor (k-NN) model: For any
X, let f(X) be the average value of Y; over the k nearest neighbors X1y -+ s Xy

to X in the training set.

o
2 Y
M5,
N
X 0 5
° 0
° %.8 ) 5
-2 a iy =
OO
-2 0 2 4
X1

How does this predictive model behave as a function of k?
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Example: k-nearest-neighbor fit

The graph shows root mean squared error (RMSE) over the remaining 500
samples (test set) as a function of k:

4.0

25

1 10 100
k (number of neighbors)
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Example: k-nearest-neighbor fit

We can get more insight into why RMSE behaves this way if we pick a specific
point and look at how our prediction error varies with k.
In particular, repeat the following process 10 times:
P> Each time, we start with a new training dataset of 500 samples.
P> We use this training dataset to make predictions at the specific point X, = 1,
X, =1.
P We plot the error: our prediction minus F*5(X), where

f*(X)=1+2X,+3X, = 6 is the true conditional mean of Y given X in the
population model.
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Example: k-nearest neighbor fit

Results (each color is one repetition):

Error: Prediction - *(X)

1 10 100
k (number of neighbors)

In other words, as k increases, variance goes down while bias goes up.
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Bias, variance, and linear regression



OLS linear regression

To better understand the role that the set of features plays in bias and variance,
let's briefly discuss bias and variance for OLS linear regression.

We'll start a classic result on bias and variance under some (unrealistic!)
assumptions on the population model, and then use this setting to investigate
how bias and variance change as the set of features changes.
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The linear population model: Three assumptions

(A1) The population model is linear, i.e., there are parameters p,, ... B, such that for
every observation:

)4
Y=Y pX, +e,
i=1
where Y is the outcome, X, ... . X, are the associated features, and ¢ is an error

random variable.

(A2) Observations in the sample are independently drawn from the population model;
in particular, errors are independent across observations, and also independent of
the features X/, ...,Xp.2

Crucially: all features in the population model are also in the sample!
(A3) All errors have E[¢|X] =0, and Var(e| X) = 62

(The assumption that errors have the same variance is called homoskedasticity.)
2This assumption can actually be relaxed slightly; see the appendix.
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The linear population model

This is a very strong set of assumptions!

Example: houses.

(A1) The price of a house is linear in a given set of features (e.g., living area,
number of bedrooms, number of bathrooms), plus some (random) error.

(A2) The houses in our sample data set are independent draws from this model,
including all the features from (A1).

(A3) Errors are independent with zero mean and constant variance.
Hard to believe this is true...
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The Gauss-Markov Theorem

The Gauss-Markov Theorem (GMT) for OLS (informally) states that if (A1)-(A3)
hold, then:

P Theirreducible error is 2.

P The bias of OLS is zero.

P In addition, among all linear modeling strategies using the features in X
that have zero bias, OLS has the lowest variance.
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The Gauss-Markov Theorem

41/74

What are the implications?
P To lower prediction error, we have to lower bias, variance, or both.

P The GMT says if (A1)-(A3) hold, we can't lower variance if we insist on a
linear modeling strategy with zero bias.

P> So any linear modeling strategy with lower prediction error than OLS must
have positive bias, and lower variance than OLS.

This observation is one of the important justifications for the value of linear
modeling strategies such as lasso and ridge regression: these will generally

have positive bias, but might offer sufficiently lower variance in return to lower
MSE overall.



Example: Lasso and ridge

Recall the previously discussed example of lasso and ridge predictions with
baseball hitters’ salaries:

Model

~—— Llasso

Test set error

~—— Ridge

1e-03 1e-02 1le-01 1e+00 1e+01
lambda
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Example: Lasso and ridge

As A increases, MSE first falls then rises.
Informally, as 4 increases, the models put less and less weight on the available
features (lasso actually zeroes out coefficients), so:

P> The models are systematically wrong = higher bias.

P> The models also become less sensitive to the training data = lower
variance.
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OLS with fewer features

Let's continue to assume that (A1)-(A3) hold, and explore the role of the number
of features in OLS in greater detail.

What happens if we fit our model using only a subset of features .S c {0, ..., p}
from the population model?

In general, the resulting OLS model will be biased.
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OLS with fewer features

A couple remarks:

P> In general, the amount of bias introduced will depend on how correlated
the remaining features are with the omitted features. (This is why it can be
possible to make good predictions despite the omission of variables, as you
saw on your problem set.)

P> When features are omitted, another concern is that the estimates of the
coefficients of the included features may be incorrect. This phenomenon
often appears as the omitted variable bias (OVB) in econometrics; we will
return to this in our next unit on inference.
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OLS with more features

What happens if we introduce a new feature into our modeling strategy?
As an extreme case, suppose our new feature is uncorrelated with the existing
features and the outcome. Then:

P The bias remains zero.

P However, the variance will increase.

(See the R Shiny dashboard for an example.)

46/74



A bias-variance "tradeoff”?
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If we measure “complexity” of a modeling strategy in terms of the number of
features we use to fit the model, then our preceding discussion might lead us to
believe that:
P More “complex” modeling strategies (i.e., more features) tend to have
higher variance and lower bias.
P> Less “complex” modeling strategies (i.e., fewer features) tend to have lower
variance and higher bias.

This is usually what's meant by a “bias-variance tradeoff"...

...Is this all there is to the story?



A bias-variance "tradeoff”?

The “tradeoff” view can be misleading!

It's possible to have high bias and high variance at the same time, and bias and
variance can move in unusual ways with model “complexity”...

In general, adding features can affect both bias and variance, depending on the
correlation between the new features, existing features, and the outcome.

Let's dig into this a bit more...
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Double descent



A puzzle: Double descent

Developments over the last decade in machine learning have challenged the
“tradeoff”: for some combinations of data context, modeling strategy, and
model fitting procedure, the following relationship between train error, test
error, and “complexity” is observed:

\A;;

(From openai.com/blog/deep-double-descent/)
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openai.com/blog/deep-double-descent/

“Overparameterization”

The double descent phenomenon highlights the intriguing phenomenon that
modeling strategies that appear to be “overparameterized” can in fact
generalize very well:

Informally, models so “complex” that they can nearly perfectly fit the training
data, are nevertheless not necessarily overfitting the data; they appear to have
both low bias and low variance.

How?
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Double descent: An example

Let's explore double descent with lasso. We'll use synthetic data generated as
follows:

1. First, generate Y}, ..., Yjpo0 @s N(0, 1) random variables.

2. Then, foreachi=1,...,1000, generate 2000 features X, ..., X, 5090 as
X,; =Y, +s5;;, where s5;; is N0, 7).

3. Finally, we fit lasso models using only the first p features, for

p = 100,200, ...,2000 (with a fixed value of 1), and test them on a test set with
5000 data points,

What's unusual about this data generating procedure?
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Results

If z =2 and 4 =0.001, our test error continues to drop with increasing p:

0.04
0.03

@ Test
0.02 - Train

o
o
iy

Mean Squared Error (MSE)
o
o
o

500 1000 1500 2000
Number of Covariates (p)

Why? Because every additional feature brings new information about the
outcome.
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Results

What happened to “double descent”? Now suppose 7 =20 and 4 = 0.001:

0.9

0.6 @ Test
== Train

Mean Squared Error (MSE)

500 1000 1500 2000
Number of Covariates (p)

Why? As p — 1000, lasso gets “confused”: 7% is high, and A isn't very large, so it
fits the training data well ... but then generalizes poorly. But with more features,

this “confusion” is overcome.
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Moral: “Big data” and highly parameterized models

Usually, we think of “big data” as having more samples in our data (larger n).

But an equally consequential change is the availability (and relevance to the
population model!) of many more features (larger p).
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Moral: “Big data” and highly parameterized models
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In many ways, “"double descent” is not the central story here: itis a practical
artifact of a particular modeling strategy and model fitting procedure passing
through “confusion” as p grows, so that variance rises then falls.

Instead a key takeaway is:

With the right data context, right modeling strategy, and right model fitting
procedure, if those new features all bring novel information about the outcome,
bias and variance can continue to decrease as you use them. (See R Shiny
dashboard for an example.)



A comment on “irreducible” error
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In this data generating procedure, every new feature brings novel information
about the outcome.

Among other things, this means the concept of “irreducible” error 62(X) is
unusual:

P Irreducible error is defined with respect to the features in X.

P> Butif we keep adding features, then we are effectively defining a new
irreducible error, with that new set of features.

P And if those new features keep bringing additional information, then the
“irreducible” error will be reduced!

n

This is an important point in practice: you shouldn’t assume that “irreducible
error is truly irreducible, since new features can actually reduce that error.



Summary



Bias-variance decomposition: Summary

The bias-variance decomposition is a conceptual guide to understanding what
influences generalization error:
P> Frames the question by asking: What if we were to repeatedly use the same
modeling strategy, but on different training sets?

P> Generalization error has only three components! On average (across
models built from different training sets):

. . .2 .
irreducible error + bias” + variance.

P> Bias: systematic mistakes in predictions on test data, regardless of the
training set
P> Variance: variation in predictions on test data, as training data changes
Modeling strategies can be “"bad” (high test error) because of high bias or high
variance (or both).
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Coda: “Bias” and “variance” in classification problems
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Note that formally, the bias-variance decomposition only applies for regression
problems with squared error loss.

What about classification problems? Similar qualitative phenomena are
observed (e.g., the double descent example above from OpenAl is in the
context of image classification.)

There are versions of the B-V decomposition that have been developed for 0-1
loss as well, though one has to be careful in interpreting them.?

30ne example: P. Domingos (2000), “A unified bias-variance decomposition”, ICML.



Appendix: Proof of the bias-variance decomposition
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Bias-variance decomposition theorem [:]

In this appendix we prove the bias-variance decomposition for the general case.

Theorem
Ey xy[(f(X) = Y)?|X] = 6*(X) + Bias® + Variance, (%))
where:
o2(X) = Ey[(Y — f*(X)?*|X] = Vary (Y| X);
Bias = Ex y[/(X)|X] - f*(X);
Variance = Vary y(/(X1X) = Exy |(f(0) ~ Exy[/(R)IX1?) .
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Proof [«]

We denote the left hand side of (x) by AMSE (for “average MSE").

We first show: . . .
AMSE = (D) + Exy [(/(0) - S (R)2IR]
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Proof (continued) [x]

Starting with the definition of AMSE, add and subtract f*(X):
AMSE = Ey x y[(f(X) = £*(X) + £*(X) - Y)*| X].
Expand the square:
AMSE = Ey x y [(f(X) = f*(X))?
+2(f(X) = AN (X) = Y)
+(fX) -1 X|.

61/74



Proof (continued) [x]

By linearity of expectation, we get three terms:

AMSE =Ey xy[(f(X) - f*(X))?|X]

Te:rrn 1
+2Ey x y[(f(X) = £ (X)) f*(X) = V)| X]
Term 2 (c\;:uss term)
+Ey xy[(f*(X) = Y)2|X].

~
Term 3

Term 3: Since f*(X) depends only on X (which we condition on), and Y is
independent of the training data:

Ey x y[(f*(X) = Y)?|X] = Ey[(Y — £* (X)) X] = 62(X).
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Proof (continued) [x]

Term 2 (cross term): Using the law of iterated expectations:
2Ey x y[(f(X) = F*(ON(f*(X) = V)| X]
= 2Exy [(FC0) - £ Byl (K) - 1)IXT | X
Since f*(X) = [EY[Y|)?] by definition:
Ey[(f*(X) = V)[X] = f*(X) - Ey[Y]|X] = f*(X) - f*(X) =0.
Therefore, Term 2 = 0.
Combining all terms completes the first part:

AMSE = 6*(X) + Ex y[(f(X) = f*(X))*| X].
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Proof (continued) [x]

Now we complete the proof by decomposing the second term into Bias® +
Variance.

Let /(X) = EX,Y[fA()?)l)?] denote the average prediction across parallel
universes.

Parallel to the first step: Add and subtract F(X):
fX) = X)) = [/ (X) = FXO1+ [F(X) = f*(X)).
Square both sides:
f(X) = H(X))? =(f(X) - f(X))?
+2(f(X) = FXO)F(X) = f5(X))
+(f(X) = fH (X))
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Proof (continued) [x]

Take expectations to get three terms:

Exy[(f(X) = f*(X)Y*|X]
=Exy[(/(X) = F(X)?|X]
b RN 3
+ g[Ex,YKf()?) — FEN(X) - f*(f))l)?l
Term B (cross term)

+ Exy[(f(X) = f*(X)?|X].

>

~
Term C

Term A: By definition, this is exactly the Variance:
Exy[(f(X) — F(X))*|X] = Variance.
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Proof (continued) [x]

Term C: Since both f(X) and f*()?) are deterministic given X:

Ex y[(f(X) = F*(X)?|1X] = (F(X) = f*(X))* = Bias®.

Term B (cross term): Factor out the deterministic part:

2Ex y[(f(X) = FXNFX) - fH(X)IX]
=2(f(X) - /(X)) - Ex y[f(X) = F(X)|X].

But Ex y[/(X) — F(X)|X]= f(X) - f(X)=0.

Therefore, Term B = 0.
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Proof (conclusion) [x]

Combining all terms:

[EX,Y[(f()?) — £*(X))?| X] = Bias? + Variance.

Together with the first part of the proof, we have:

AMSE = 62(X) + Bias® + Variance.

Key insight: Both parts used the same technique: add and subtract an
expectation, then show the cross term vanishes because we're
adding/subtracting exactly that expectation.
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Appendix: Proof of the Gauss-Markov Theorem [:x]



Technical details for linear regression [ ]
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Throughout this appendix, we assume that (A1)-(A3) as stated in the lecture
hold.

We begin by noting that we can slightly relax assumption (A2) as stated in the
text:

Rather than independence of the errors, it suffices that they are uncorrelated
with the covariates and conditionally homoskedastic given the covariates:

Ele;|X] =0; Var(e;|X) = o2 for all i.



Linear regression: bias [x]

This derivation shows bias of OLS is zero:
Ey[/(X)|X,X] = Ey[XB|X,X]
= Ey[XX'X)"'XTY)| X, X]
= X(X"X) ' (X" (E.[XB + €] X, X])
=XX"X)'X"X)p = XB = f(X).
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The Gauss-Markov theorem: Precise statement [x]
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The Gauss-Markov theorem shows that among all unbiased linear modeling
strategies, OLS has minimum variance.

Theorem (Gauss-Markov)

Assume a linear population model with uncorrelated errors. Fix a (row) covariate
vector X, and lety = X8 = Zj B X;.

Given data X, Y, let B be the OLS solution. Let = Xp = XX X)"'XTY.

Let$ = g(X X)Y be any other estimator for y that is linear in Y and unbiased for
all X: Ey[81X, X]=7y.

Then Var(8|X, X) > Var(7|X, X), with equality if and only if 6 = 7



The Gauss-Markov theorem: Proof [x]

Proof:* We compute the variance of §.

E[(6 — E[6]1 X, X])*| X, X]
=E[(6 - Xp)*|X.X]
=E[(6-7+7 - XB*IX.X]
= E[(6 — 7)1 X.X]

+E[(7 - XB)*|X.X]
+2E[(6 - 7)(7 - XB)IX. X].

Look at the last equality: If we can show the last term is zero, then we would be
done, because the first two terms are uniquely minimized if 6 = 7.

*Throughout this proof we suppress subscripts on the expectations for ease of exposition.
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The Gauss-Markov theorem: Proof [x]

Proof continued: For notational simplicity let ¢ = g(X, X). We have:

ELG6 - 7)G — XB)I X, X]
= E[(cY — Xp)*(XB — XB)| X, X].

Now using the fact that g = (X"X)"!X"Y, that Y = X + €, and the fact that
E[ee"|X,X] = 6°1, the last quantity reduces (after some tedious algebra) to:

XXX XTeT = XT).
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The Gauss-Markov theorem: Proof [x]

Proof continued: To finish the proof, notice that from unbiasedness we have:
E[cY|X, X] = X§B.
But since Y = Xp + €, where E[€¢|X, X1=0, we have:
cXp = XB.
Since this has to hold true for every X, we must have ¢X = X, i.e., that:
X" - XT =0.

This concludes the proof.
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Variance of OLS [x]

We can explicitly work out the variance of OLS in the linear population model, if
we assume that the covariates X stay fixed across parallel universes, and we only
resample the outcomes Y.

Var(f(X)|X, X) = Var(X X' X)"'XTY|X, X)
= XX™X)"'XT Var(Y|X)XX'X)"' XT.

Now note that Var(Y|X(= Var(e|X) = 6*I where I is the n x n identity matrix.

Therefore:
Var(f(X)|X, X) = > X(X'X)7 X T.
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