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From prediction to inference



Recall: Prediction

In the first unit of the course, we focused on prediction:
Given a dataset 𝐗 and 𝐘, and a new covariate vector 𝑋⃗, use the data to build the
best model you can to predict the corresponding new outcome 𝑌 .
We can think of prediction as black boxmodeling: it doesn’t matter if we
“understand” the population model, as long as we can make good predictions.
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Example: Housing prices

Recall our housing price example. Using the Saratoga Housing dataset,
suppose we fit an OLS linear regression:
price ≈ 13,439.394 + 113.123 × livingArea

This fitted model allows us to predict the price of a new house given its living
area.
But this model also raises questions that go beyond prediction...
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Questions beyond prediction

The coefficient on livingArea reveals a positive association with price. How
should we interpret this?
Given this fitted model, we might ask:
▶ Could the true association between livingArea and price be larger or

smaller, or even nonexistent?
▶ How confident are we in the quantitative relationship between livingArea

and price?
Questions like these are the domain of statistical inference.
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Statistical inference

By contrast to prediction, inference refers to “opening the black box”, and trying
to understand and explain the population model itself.
In other words: Inference tries to understand and quantify which relationships
between covariates and outcome are actually present in the population model.
Formally: Statistical inference focuses on learning the structure of the population
model itself, rather than only making predictions.
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Why should we care?

Why do we care about inference, beyond prediction?
▶ Interpretation. We often want to understand what the fitted model tells us

about the population (e.g., the association of livingArea with price).

▶ Causality. Ultimately, inference is the basis for extracting “if-then”
relationships. E.g.: If I increase living area, how much will the house price
increase?

▶ Decisions. Understanding the population model correctly guides actions
we take, experiments we try, etc.
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The two goals of inference

Inference is principally concerned with two closely related goals:
▶ Estimation. What is our best guess for the process that generated the data?

I.e., what is our best guess for the population model?

▶ Quantifying uncertainty. How do we quantify our uncertainty in the guess
we made?
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Parametric inference



Nonparametric vs. parametric inference

There are two broad approaches to inference:
In nonparametric inference, we make no assumptions about the nature of the
distribution that generated our data.
In parametric inference, we assume we know the “shape” of the distribution that
generated our data, but don’t know parameters that determine the exact
distribution.
This is really a false dichotomy: parametric and nonparametric approaches live
on a “sliding” scale of modeling complexity, and there are close relationships
between them.
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Why parametric inference?

Nonparametric inference is appealing, and increasingly feasible (as
computational power and data availability increases).
Why make assumptions if you don’t have to? Parametric inference:
▶ Can be simpler (more parsimonious).
▶ Can be easier to interpret, especially relationships between covariates and

the outcome.
▶ Can be less prone to overfitting (lower variance).
▶ Requires less data to estimate, and therefore can be more robust to model

misspecification.
Ultimately both are valuable approaches. We focus primarily on parametric
inference in this class (with linear regression as a primary example).
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Parametric inference: An example

We’ve actually already seen an example of parametric inference:
Suppose our population is all valid flights in 2024, i.e., flights with a recorded
arrival delay; recall we denoted the population mean by 𝜇, and the population
variance by 𝜎2.
Suppose we get a sample of 𝑛 = 10 data points 𝑌1, … , 𝑌𝑛 independently drawn
from this data.
Questions: How would we estimate 𝜇? How confident are we in our estimate?
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Parametric estimation

A formal description of estimation:
▶ The populationmodel is characterized by certain parameters 𝜽 = (𝜃1, … , 𝜃𝑑)

(e.g., 𝜇 and 𝜎2 in the flights example).
▶ We obtain a data sample 𝒟 (e.g., 𝒟 = 𝐘 in the flights example, or

𝒟 = (𝐗,𝐘) when there are also features available), consisting of
independent random samples from the population.

▶ We use 𝒟 to form an estimator 𝜽̂ = 𝜽̂(𝒟) of 𝜽.
Since we have a particular data sample, we obtain a specific numerical estimate
of each parameter using this procedure.
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Parametric estimation: An example

Suppose we get a sample of 𝑛 = 10 data points 𝑌1, … , 𝑌𝑛 independently drawn
from this data.
A natural estimator of the population mean 𝜇 is the sample mean
𝑌 = (1/𝑛) ∑𝑛

𝑖=1 𝑌𝑖.
(Clearly the estimator depends on the sample.)
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Parametric inference: A frequentist view

How do we quantify our uncertainty in 𝜽̂? In other words: How sure are we of our
estimate?
The frequentist view is that our uncertainty in the estimate is inherently due to
uncertainty in the data we used to form the estimate.
In other words, the frequentist:
▶ Believes the true parameters 𝜽 are fixed (not random!)
▶ The only randomness is in the data sample from the population (“parallel

universes”).
▶ We get only one such data sample (one “universe”), and have to use it to

reason about the true parameters 𝜽.
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Parametric inference: The sampling distribution

Thus the frequentist quantifies estimation uncertainty using sampling
distributions:
Rewind time and imagine resampling data, again and again; in each “parallel
universe”:
▶ Random sampling from the population yields a dataset 𝒟 ; and
▶ Using 𝒟 , we form an estimate 𝜽̂ = 𝜽̂(𝒟).
The resulting distribution of 𝜽̂ is the sampling distribution of the estimator.
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Connecting to prediction

Previously, we used sampling distributions to understand the bias and variance
of predictions.
We are now using sampling distributions to understand the uncertainty in
parameter estimates.
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Sampling distribution of an estimator: An example
In fact, we have already previously constructed an approximate sampling
distribution of the sample mean for the flights data, over 10,000,000 parallel
universes:

True mu = 8.65
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This distribution tells us how much our sample mean varies across “parallel”
universes.
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Bias and variance of an estimator

Analogous to our discussion of learning algorithms, we can define the bias and
variance of an estimator.
For now let’s assume a single real-valued parameter 𝜃 (e.g., population mean 𝜇
in the flights example). Then for an estimator ̂𝜃 of 𝜃:
▶ Bias = 𝔼𝒟 [ ̂𝜃] − 𝜃, i.e., the difference between the mean of the sampling

distribution and the true parameter.
▶ Variance = Var𝒟 ( ̂𝜃), i.e., the variance of the sampling distribution.
▶ Standard error = SE = √Var𝒟 ( ̂𝜃), i.e., the standard deviation of the

sampling distribution.
(Here the expectation and variance are over the randomness in the data sample.)
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Mean squared error (MSE)

Just as for learning algorithms, a natural measure of the “quality” of an estimator
is itsmean squared error (MSE) against the true parameter:

MSE = 𝔼𝒟 [( ̂𝜃 − 𝜃)2].

This measures the average squared distance between the estimator and the true
parameter, across parallel universes.
A bias-variance decomposition also holds for MSE of estimators:

MSE = Bias2 + Variance.
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Comparison to prediction

Similarities and differences between prediction and estimation:
For a prediction ̂𝑓 (𝑋⃗):
▶ We care about the Average MSE at 𝑋⃗ = 𝔼𝑌 ,𝐗,𝐘[( ̂𝑓 (𝑋⃗) − 𝑌 )2|𝑋⃗].
▶ This decomposes as: Irreducible error 𝜎2(𝑋⃗) + Bias2 + Variance.

For an estimator ̂𝜃:
▶ We care about the MSE: 𝔼𝒟 [( ̂𝜃 − 𝜃)2].
▶ This decomposes as: Bias2 + Variance.

The key difference: There is no irreducible error for estimators, because the
parameter 𝜃 is fixed (not random)!
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Two approaches to quantifying uncertainty

We will discuss two broad ways of quantifying uncertainty, both based on the
sampling distribution:
1. Using the sampling distribution (e.g., its standard error) to construct

confidence intervals for the true parameter; wider intervals represent
greater uncertainty.

2. Hypothesize a particular value of the parameter of interest (e.g., “𝜇 is zero”),
then test this hypothesis using the data you observed: If the truth had been
𝜇 = 0, how likely is the data that you observed? (The answer to this question
is a p-value.)
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The challenge

But first: as we’ve discussed, there’s a problem with using the sampling
distribution:
We can’t actually compute the sampling distribution!
Why not?
▶ To compute the sampling distribution, we would need to resample from the

population model.
▶ But we don’t know the true parameters 𝜽 that define the population model.
▶ We only have one dataset 𝒟 .

So how is the sampling distribution still useful?
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Overcoming the challenge

Despite the challenge, there are two paths forward to working with the sampling
distribution:

1. Theory: Under certain assumptions, we can theoretically characterize the
sampling distribution of an estimator. We can use these characterizations to
quantify uncertainty.

2. Simulation: We can use our one data sample itself to approximate the
sampling distribution, by resampling from the data (the bootstrap
procedure).

We will explore both approaches in this unit.
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