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Recall: The challenge

To quantify uncertainty in our estimates, we need to understand the sampling
distribution of our estimator.
But we can’t actually compute the sampling distribution, because:
▶ We would need to resample from the population model.
▶ But we don’t know the true parameters that define the population model.
▶ We only have one dataset.
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Addressing the challenge

In this lecture, we show how we can characterize the sampling distribution for
three important, commonly used estimators: sample means; OLS linear
regression; and logistic regression.
A recurring theme will be that in the cases we study:
▶ the sampling distribution is well approximated by a normal distribution,
▶ centered at the true parameter, and
▶ with a variance we can estimate from data.
The estimated variance gives us estimated standard errors, which we will use to
build confidence intervals.
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The sample mean



Example: Sample mean of flight delays

Recall our flight delays example:
We have a population of 2,926,854 valid flights in 2024, with:
▶ Population mean: 𝜇 = 8.65 minutes
▶ Population standard deviation: 𝜎 = 55.47 minutes
We draw a sample of 𝑛 flights, and use the sample mean 𝑌 to estimate 𝜇.
Question: What is the sampling distribution of 𝑌 ?
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Sampling distribution of the sample mean
Here is the sampling distribution when 𝑛 = 500 (with 1,000,000 parallel
universes):
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Key observation: For large 𝑛, the sampling distribution appears to be
approximately normal!
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The Central Limit Theorem
The Central Limit Theorem (CLT) formalizes this observation:
Theorem (Central Limit Theorem)
Suppose 𝑌1, … , 𝑌𝑛 are independent, identically distributed random variables with
mean 𝜇 and variance 𝜎2.
Then as 𝑛 → ∞, the standardized sample mean converges in distribution to a
standard normal distribution:

𝑌 − 𝜇
𝜎/√𝑛

𝑑−→ 𝒩 (0, 1).

(Here 𝒩 (𝑎, 𝑏2) denotes a normal distribution with mean 𝑎 and variance 𝑏2.)
Equivalently: 𝑌 ≈ 𝒩 (𝜇, 𝜎2/𝑛) for large 𝑛.
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Using the CLT

The CLT tells us that for large 𝑛:
▶ The sample mean 𝑌 is approximately normally distributed.
▶ The mean of this normal distribution is 𝜇 (the true population mean).
▶ The variance of this normal distribution is 𝜎2/𝑛.
▶ So the (approximate) standard error for large 𝑛 is SE = 𝜎/√𝑛.

This is remarkable: No matter what the distribution of the individual 𝑌𝑖 is,
the sample mean is approximately normal for large 𝑛!
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Estimating the standard error

The CLT tells us the asymptotic standard error is SE = 𝜎/√𝑛.
But there’s a problem: We don’t know 𝜎!
Solution: We can estimate 𝜎 from the data using the sample variance:

𝜎̂ =
√√√
⎷

1
𝑛 − 1

𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑌 )2.

Then we estimate the standard error as:

ŜE = 𝜎̂
√𝑛

.

This is called the estimated standard error.
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Using the estimated standard error

For large 𝑛, we can use ŜE in place of SE:

𝑌 ≈ 𝒩 (𝜇, 𝜎̂2

𝑛 ) .

Next we will show how to use this approximate sampling distribution to
construct confidence intervals.
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Confidence intervals for the population mean



Confidence intervals
Now that we have the estimated standard error ŜE, we can construct confidence
intervals for 𝜇.
For large 𝑛:

▶ The sampling distribution of 𝑌 is approximately normal withmean 𝜇, and
standard deviation ŜE.

▶ A normal distribution has ≈ 95% of its mass within 1.96 standard deviations
of the mean.

▶ Therefore, in 95% of our “universes”, 𝑌 will be within 1.96 ŜE of the true
value of 𝜇:

𝜇 − 1.96ŜE ≤ 𝑌 ≤ 𝜇 + 1.96ŜE.
▶ In other words: in 95% of our universes:

𝑌 − 1.96 ŜE ≤ 𝜇 ≤ 𝑌 + 1.96 ŜE.
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Confidence intervals

We refer to [𝑌 − 1.96 ŜE, 𝑌 + 1.96 ŜE] as a 95% confidence interval for 𝜇.
More generally, let 𝑧𝛼 be the value such that 𝑃 (𝑍 ≤ 𝑧𝛼) = 1 − 𝛼 for a 𝒩 (0, 1)
random variable 𝑍. Then:

[𝑌 − 𝑧𝛼/2ŜE, 𝑌 + 𝑧𝛼/2ŜE]

is a 1 − 𝛼 confidence interval for 𝜇.
In R, you can get 𝑧𝛼 using the qnorm function. When 𝛼 = 0.05, then 𝑧𝛼/2 ≈ 1.96.
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Confidence intervals: What’s random?

Important observation: Note that the interval is random, and 𝜇 is fixed!
In particular, often you will hear: “There is a 95% chance that the true 𝜇 is
between 𝑌 − 1.96ŜE and 𝑌 + 1.96ŜE.”
But when this statement is made, it’s the endpoints of the interval that are
random, not 𝜇.
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Confidence intervals: “Coverage”

The confidence level 1 − 𝛼 is called the coverage of the confidence interval.
As we change 𝛼 to be larger (i.e., lower coverage or “confidence”), the
confidence interval gets narrower.
Further, for a given 𝛼, confidence intervals can be enlarged while still having at
least 1 − 𝛼 coverage; so the goal is always to construct the smallest interval
possible that has the desired coverage.
Finally, note that other approaches to building 1 − 𝛼 confidence intervals are
possible, that may yield asymmetric intervals.
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Ordinary least squares



The linear population model: Three assumptions
Recall these assumptions:

(A1) The population model is linear, i.e., there are parameters 𝜷 = (𝛽1, … , 𝛽𝑝) such that
for every observation:

𝑌 =
𝑝

∑
𝑗=1

𝛽𝑗𝑋𝑗 + 𝜖 = 𝑋⃗𝜷,

where 𝑌 is the outcome, 𝑋1, … , 𝑋𝑝 are the associated features, and 𝜖 is an error
random variable.

(A2) The sample consists of 𝑛 observations 𝐘 and associated features 𝐗 (𝑛 × 𝑝 matrix).
Observations are independently drawn from the population model; in particular,
errors are independent across observations, and also independent of the features
𝑋1, … , 𝑋𝑝.

(A3) All errors have 𝔼[𝜖|𝑋⃗] = 0, and the same variance Var(𝜖|𝑋⃗) = 𝜎2.
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Another assumption: Normal errors

Now we’ll add a fourth assumption to that group:
(A4) The errors are normally distributed: 𝜖𝑖 ∼ 𝒩 (0, 𝜎2) for each 𝑖.
Under the assumptions (A1)-(A4), we showed previously that linear regression
via OLS produces coefficients 𝜷̂ that aremaximum likelihood estimates of the
true coefficients 𝜷.

(A1)-(A3) may already be implausible, and it’s reasonable to be skeptical of (A4)
too...but let’s see where it leads us first.
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The true SE for linear regression

Under (A1)-(A4), it can be shown that for any 𝑛, the OLS coefficient vector 𝜷̂:
1. is normally distributed,
2. with mean 𝜷 (the true coefficient vector in the population model), i.e., it is

unbiased, and
3. with covariance matrix 𝜎2(𝐗⊤𝐗)−1.1

(Recall that 𝐗 denotes the 𝑛 × 𝑝 feature matrix.)
Thus the standard error of ̂𝛽𝑗 is the 𝑗’th diagonal entry of the covariance matrix:

SE2
𝑗 = 𝜎2(𝐗⊤𝐗)−1

𝑗𝑗 .

1This result is derived using a similar analysis to the bias-variance decomposition for OLS.
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Estimating 𝜎2 [∗]

An important detail here is that we don’t directly use the MLE 𝜎̂2
MLE to estimate 𝜎2.

Recall that 𝜎̂2
MLE is the average sum of squared residuals:

𝜎̂2
MLE = 1

𝑛

𝑛

∑
𝑖=1

(𝑌𝑖 − 𝐗𝑖𝜷̂)2.

But this is not unbiased as an estimator of 𝜎2. In fact it can be shown that:

𝔼𝐘[𝜎̂2
MLE|𝜷, 𝜎2,𝐗] = 𝑛 − 𝑝

𝑛 𝜎2.
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Estimating 𝜎2 [∗]

In other words, 𝜎̂2
MLE underestimates the true error variance.

This is because the MLE solution 𝜷̂ was chosen to minimize squared error on the
sample data. We need to account for this “favorable selection” of the variance
estimate by “reinflating” it. An unbiased estimate of 𝜎2 is:

𝜎̂2 = 1
𝑛 − 𝑝

𝑛

∑
𝑖=1

(𝑌𝑖 − 𝐗𝑖𝜷̂)2.

The quantity 𝑛 − 𝑝 is called the degrees of freedom (DoF).
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ŜE and confidence intervals for linear regression

Putting things together, under (A1)-(A4), we can estimate the asymptotic
standard error of ̂𝛽𝑗 as:

ŜE2
𝑗 = 𝜎̂2(𝐗⊤𝐗)−1

𝑗𝑗 .
(It can be shown this is a good estimate when 𝑛 is large.)
And a 95% confidence interval for ̂𝛽𝑗 is:

[ ̂𝛽𝑗 − 1.96ŜE𝑗 , ̂𝛽𝑗 + 1.96ŜE𝑗].
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Example 2: Linear normal model

This is what statistical software does internally!
R output after running a linear regression:
Call:
lm(formula = price ~ 1 + livingArea + bedrooms, data = sh)
...
Coefficients:

Estimate Std. Error ...
(Intercept) 36667.895 6610.293 ...
livingArea 125.405 3.527 ...
bedrooms -14196.769 2675.159 ...
...
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Example 2: Linear normal model

In the regression price ~ 1 + livingArea + bedrooms, the coefficient on
livingArea is 125.405, with ŜE = 3.527.
Therefore a 95% confidence interval for this coefficient is: [118.492, 132.318].
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M-estimators



A puzzle: What if the errors aren’t normal?

We studied the sample mean as an estimator of the population mean without
assuming the population was normally distributed ...
... but for OLS, we had to assume the errors were normally distributed –
assumption (A4).
Question: Can we construct confidence intervals for OLS, even if errors aren’t
normally distributed?
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A broader perspective: M-estimators
The answer lies in recognizing that both the sample mean and OLS belong to a
broader class of estimators calledM-estimators.2

Informally, an M-estimator 𝜽̂ has three ingredients:

1. For each possible parameter vector 𝜽 and outcome 𝑌 , a loss function ℓ(𝑌 ;𝜽)
is defined.

2. The estimator 𝜽̂ is constructed by minimizing the average empirical loss on
the training data: compute the loss at each training sample, then find the 𝜽̂
that minimizes the average training loss.

3. The target true parameter — denoted 𝜽∗ — is the uniqueminimizer of the
expected population loss, i.e., the average of ℓ(𝑌 ;𝜽) over the population
distribution.
The requirement of uniqueness is called identifiability.

2The “M” stands for “maximum likelihood-type” estimators; we’ll see why shortly.
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Formal definition: M-estimators [∗]

AnM-estimator 𝜽̂ for 𝜽 is defined via a a loss function ℓ(𝑌 ;𝜽) with two properties:
1. 𝜽̂minimizes the average empirical loss:

𝜽̂ = arg min
𝜽̃

1
𝑛

𝑛

∑
𝑖=1

ℓ(𝑌𝑖, 𝜽̃);

2. The true parameter 𝜽∗ uniquelyminimizes the expected population loss:

𝜽 = arg min
𝜽̃

𝔼𝑌 [ℓ(𝑌 ; 𝜽̃)].

The uniqueness requirement is called identifiability.
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Example: Sample mean as an M-estimator [∗]

(1) We showed previously that the sample mean minimizes the mean squared
error loss (MSE):

̄𝑌 = arg min
𝜃

1
𝑛

𝑛

∑
𝑖=1

(𝑌𝑖 − 𝜃)2.

Here the loss function is the squared error ℓ(𝑌𝑖, 𝜃) = (𝑌𝑖 − 𝜃)2.
(2) We also showed previously that:

𝜇 = arg min
𝜃

𝔼𝑌 [(𝑌 − 𝜃)2] = arg min
𝜃

𝔼𝑌 [ℓ(𝑌 , 𝜃)],

i.e., the population mean minimizes expected loss across the population.
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Example: OLS as an M-estimator (1) [∗]

The OLS coefficients 𝜷̂ minimize mean squared error on the training data:

𝜷̂ = arg min
𝜷

1
𝑛

𝑛

∑
𝑖=1

(𝑌𝑖 − 𝐗𝑖𝜷)2.

So the loss, given features 𝑋⃗, is the squared error ℓ(𝑌 ; 𝑋⃗, 𝜷) = (𝑌 − 𝑋⃗𝜷)2.
(Note that here we consider a loss function for the outcome given features.)
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Example: OLS as an M-estimator (2) [∗]

In Lecture 7, we had shown that in general, the conditional expectation
𝑓 ∗(𝑋⃗) = 𝔼𝑌 [𝑌 |𝑋⃗] minimizes expected population squared error
𝔼𝑌 [(𝑌 − 𝑓(𝑋⃗))2|𝑋⃗].
Under (A1)-(A3), the conditional expectation is:

𝑓 ∗(𝑋⃗) =
𝑝

∑
𝑗=1

𝑋𝑗𝛽𝑗 = 𝑋⃗𝜷,

where 𝜷 are the true parameters in the population model.
This is the second condition for an M-estimator: for every 𝑋⃗, the true 𝜷
minimizes the expected population loss 𝔼𝑌 [ℓ(𝑌 ; 𝜷, 𝑋⃗)].
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Asymptotic normality of M-estimators

Why are M-estimators useful?
Under sufficient mathematical “regularity” conditions on the loss function,
we can show that for large 𝑛, an M-estimator 𝜽̂ has a sampling distribution:
1. that is approximately normal;
2. with mean 𝜽∗ (the corresponding true parameter vector), i.e., ̂𝜃 is consistent;
3. with a covariance matrix 𝐕/𝑛.

Further, it can be shown that the covariance matrix 𝐕 can be estimated from the
single data sample that you observe. (See appendix for mathematical details.)
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Implications for OLS under (A1)-(A3)

In the case of OLS, if (A1)-(A3) hold, it can be shown that for large 𝑛, the resulting
covariance matrix 𝐕/𝑛 is well approximated by the computation in the case with
normal errors (see appendix):

𝐕
𝑛 ≈ 𝜎2(𝐗⊤𝐗)−1.

In particular, even if errors are not normally distributed, i.e., (A4) does not hold,
the estimated standard errors in a regression table are approximately correct if 𝑛
is “large”.
So you can compute (approximate) confidence intervals exactly as before.
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Implications for OLS: Further relaxing assumptions

Using the M-estimation approach, we can even further weaken assumptions in
(A2)-(A3), notably:
▶ We can relax homoskedasticity (constant error variance 𝜎2) in (A3) to

heteroskedasticity (𝜎2 that might depend on the value of covariates).
▶ We can allow certain types of correlated (non-independent) observations,

relaxing (A2); e.g., when there is clustering in the data.

In these cases, the estimated standard error that lm() produces will be incorrect;
nevertheless, we can calculate “corrected” (or robust) estimated standard errors.
IMPORTANT NOTE:We still require the other assumptions to hold – linear
population model (A1), and all features present in the sample (A2) with zero
mean errors (A3).
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Implications for OLS: Further relaxing assumptions [∗]
E.g., suppose data is heteroskedastic, i.e., the error variance 𝜎2 is not constant
across observations. An example with diamond weights and prices:
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Implications for OLS: Further relaxing assumptions [∗]

Heteroskedasticity violates (A3), and the estimated standard error that R
produces will be incorrect.
Nevertheless, the theory of M-estimation provides a means to estimate the
standard error (called a robust standard error), as long as the other assumptions
hold (see appendix).
We can also use the M-estimator approach to compute robust standard errors
for correlated (non-independent) (e.g., clustered observations), which violates
(A2).
In R, robust standard errors for OLS can be computed using the sandwich and
lmtest packages.
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Other M-estimators [∗]

M-estimation is a very broad and useful approach to statistical inference!
For example:
▶ The sample median can be shown to be the M-estimator for the population

median, with loss function ℓ(𝑌 ; 𝜃) = |𝑌 − 𝜃| (the absolute deviation);
▶ 𝑝-quantile regression (see problem set) can be shown to be the M-estimator

for conditional population 𝑝-quantiles, with loss function given features 𝑋⃗:

ℓ𝑝(𝑌 ; 𝜷, 𝑋⃗) = 𝑝[𝑌 − 𝑋⃗𝜷]+ + (1 − 𝑝)[𝑋⃗𝜷 − 𝑌 ]+.
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Maximum likelihood estimators



Reminder: MLEs

Earlier in the class we learned aboutmaximum likelihood estimation (MLE).
Let’s recall the basic idea, now written out in the notation of parametric
estimation:
1. Distributional assumption: “Pretend” that the population model is a

distribution 𝑓(𝑌 ;𝜽) with a known structure, but unknown parameters 𝜽.
2. Likelihood computation: For each choice of parameters 𝜽, compute the

chance of seeing the training data 𝐘, given a particular value of 𝜽.
3. Optimization: Pick the parameter values 𝜽̂ that maximize the likelihood.

34/70



MLEs are M-estimators

Recall that the log likelihood function (LLF) is: log 𝑓(𝑌 ;𝜽).
A key fact: MLEs are M-estimator, with loss function
ℓ(𝑌 ;𝜽) = −LLF = − log 𝑓(𝑌 ;𝜽). (See appendix.)
So all the previous theory leading to asymptotic normality applies to anyMLE!
A key example: logistic regression.
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Example: Logistic regression

We apply this approach to logistic regression. Assumptions:

(B1) Population model: For a given covariate vector 𝑋⃗, there are parameters 𝛽0, … , 𝛽𝑝
such that:

𝑃 (𝑌 = 1|𝑋⃗) = exp(𝑋⃗𝜷)
1 + exp(𝑋⃗𝜷)

= 1 − ℙ(𝑌 = 0|𝑋⃗),

where 𝑌 is the associated (binary) outcome.

(Note: 𝑋⃗𝜷 = 𝛽0 + 𝛽1𝑋1 + ⋯ 𝛽𝑝𝑋𝑝.)
(B2) The sample data 𝐗,𝐘, consists of 𝑛 independent draws from the population model.
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Logistic regression: Example

R reports estimated standard errors as part of the logistic regression table.
An example with the CORIS dataset:
Call:
glm(formula = chd ~ ., family = "binomial", data = coris)
...
Coefficients:

Estimate Std. Error ...
(Intercept) -0.878545 0.123218 ...
sbp 0.133308 0.117452 ...
tobacco 0.364578 0.122187 ...
ldl 0.360181 0.123554 ...
...
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Logistic regression: Example

In this logistic regression, the coefficient on ldl is 0.360, with 𝑆𝐸 = 0.124.
Interpretation: For large 𝑛, under assumptions (B1)-(B2), the sampling
distribution of the estimated coefficient ̂𝛽ldl is approximately normal, with:

̂𝛽ldl ≈ 𝒩 (𝛽ldl, 0.1242) .

Here 𝛽ldl is the true coefficient under (B1)-(B2).
We can build confidence intervals as before: a 95% confidence interval for this
coefficient is: [0.117, 0.603].
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More on MLEs: Fisher information [∗]

In fact, for MLEs, we can be more explicit in characterizing the variance 𝐕 that
appears in asymptotic normality for M-estimators.
If 𝜽̂ is the MLE for 𝜽∗, we can show (see appendix) that for large 𝑛:

𝜽̂ ≈ 𝒩 (𝜽
∗, 1

𝑛(ℐ (𝜽∗))−1
) ,

where ℐ (𝜽∗) is the Fisher information matrix at the true parameter 𝜽∗.
Further, it can be shown that ℐ (𝜽∗) can be estimated from the single data
sample you have.
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More on MLEs: Asymptotic efficiency [∗]

If you actually believe the parametric population model specified by the
likelihood is correct, then MLEs have an additional important property:
Asymptotic efficiency: Among all “consistent” estimators of the true 𝜽∗ (i.e.,
estimators that converge in probability to the true 𝜽∗ as 𝑛 → ∞), the MLE has the
smallest asymptotic variance. (See appendix.)
In other words: If the model is correctly specified, no other estimator that
accurately estimates the parameters can have lower variance than the MLE
(asymptotically).
So if you really believe the model (a big “if”!),
this is a strong theoretical justification for using the MLE.
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Limitations and caveats



What we’ve seen

We’ve used the perspective of M-estimation to provide a unified approach to
standard errors and confidence intervals across sample means, OLS linear
regression, and logistic regression.
We found that for such estimators, for large 𝑛:
▶ the sampling distribution is well approximated by a normal distribution,
▶ centered at the true parameter, and
▶ with a variance we can estimate from data.
While powerful, there are also significant limits...
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Limitation (1): Asymptotics

Throughout our discussion we’ve talked about asymptotic normality, which
requires “large” sample size 𝑛.
How “large” depends on context, and in particular, typically depends on how
many features or parameters are being estimated.
When the number of features 𝑝 is large, the sample size 𝑛 needed for accurate
estimation and inference is much larger as well.
(The setting where 𝑝 grows together with 𝑛 is a practically important and
advanced topic in statistical inference referred to as the high-dimensional
statistics.)
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Limitation (2): “Parameters”

Constructing a confidence interval for a parameter requires accepting that a true
parameter exists.
For example, if we don’t even believe house prices are linear in features, then
there is no “true coefficient” for livingArea.
So for example, assumptions (A1) for OLS and (B1) for logistic regression
(existence of coefficients in the population model) are essential to what we’ve
presented.
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A note on interpretability

Even when we don’t necessarily believe assumptions such as (A1) or (B1) hold, it
can be very useful to still “pretend” such assumptions hold, because they lead to
interpretable parameters:
We can interpret a coefficient as informing us about the association between a
feature and the outcome (holding other features constant).
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Limitation (3): Identifiability

It might be nice to think of more complex models, e.g., neural networks as
“M-estimators”, since they typically minimize an average (empirical) loss (e.g.,
average squared error or average log loss on the training data).
Unfortunately, the parameters for such models are unidentifiable: The
optimization problems defining M-estimation can have many solutions.
So the theory of M-estimation breaks down for such models.
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Limitation (4): Other optimization problems

Other models we’ve seen don’t even involve optimization problems that look
like M-estimation:
▶ Lasso and ridge regression involve optimization problems that are not just

empirical averages of loss over the training data: They also involve
regularization terms in the objective.

▶ Decision trees and related models involve greedy, discrete optimization
over tree structures; these cannot be written as empirical average loss
minimization.

The other limitations apply too: e.g.:
▶ Lasso and ridge are often most relevant in the high-dimensional regime;
▶ It’s not even clear what “parameters” we would estimate for decision trees.
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Appendix: Theory of M-estimators



Appendix: M-estimator theory [∗]

In this appendix, we provide technical details on:
1. Regularity conditions for asymptotic normality of M-estimators.
2. Derivation of the asymptotic variance formula for M-estimators.
3. Estimation of the asymptotic variance in practice.

For simplicity, we start in a setting where observations 𝑌 are real-valued (e.g.,
arrival delays), and the parameter 𝜃 of interest is a scalar (e.g., the population
mean), then generalize to vector-valued parameters.
Note: This material is advanced technically; it is optional and intended for
students interested in the theoretical foundations.
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Setup: M-estimator definition [∗]
An M-estimator ̂𝜃 is obtained:

̂𝜃 = arg min
𝜃

1
𝑛

𝑛

∑
𝑖=1

ℓ(𝑌𝑖; 𝜃),

where:
▶ ℓ(𝑌 ; 𝜃) is a loss function; and
▶ 𝑌1, … , 𝑌𝑛 are independent samples from the (unknown) population

distribution.
Let 𝐿(𝜃) = 𝔼𝑌 [ℓ(𝑌 ; 𝜃)] denote the population loss, and let:

𝜃∗ = arg min
𝜃

𝐿(𝜃).

be the true parameter (the minimizer of the population loss).
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Regularity conditions – part 1 [∗]

We start with two regularity conditions:

1. Identifiability: 𝜃∗ is the unique minimizer of 𝐿(𝜃).
2. Uniform law of large numbers: As 𝑛 → ∞, the empirical average loss

(1/𝑛) ∑𝑛
𝑖=1 ℓ(𝑌𝑖; 𝜃) converges uniformly in 𝜃 to the expected population loss

𝔼𝑌 [ℓ(𝑌 ; 𝜃)].
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Consistency of M-estimators [∗]

Under the previous two regularity conditions, our estimator is consistent:
Consistency means that as our sample size 𝑛 grows, our estimator ̂𝜃 converges in
probability to the true parameter 𝜃∗.
Theorem (Consistency)
Under the previous two regularity conditions, the M-estimator is consistent:

̂𝜃 𝑝−→ 𝜃∗ as 𝑛 → ∞.

This is a prerequisite for asymptotic normality, which describes the distribution
of ̂𝜃 around 𝜃∗.
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Regularity conditions – part 2 [∗]
We now add four more regularity conditions:
3. Smoothness: ℓ(𝑦; 𝜃) is twice continuously differentiable in 𝜃 for all 𝑦.
4. Interchange: We can interchange expectations and derivatives. Formally:

𝐿′(𝜃) = 𝔼[ℓ′(𝑌 ; 𝜃)], 𝐿″(𝜃) = 𝔼[ℓ″(𝑌 ; 𝜃)].

Here ℓ′(𝑌 ; 𝜃) = 𝜕
𝜕𝜃 ℓ(𝑌 ; 𝜃) and ℓ″(𝑌 ; 𝜃) = 𝜕2

𝜕𝜃2 ℓ(𝑌 ; 𝜃).
5. Non-degeneracy: The second derivative of population loss at 𝜃∗ is positive:

𝐻 = 𝐿″(𝜃∗) = 𝔼[ℓ″(𝑌 ; 𝜃∗)] > 0.

6. Finite variance: The variance of the derivative is finite:

𝐽 = Var[ℓ′(𝑌 ; 𝜃∗)] = 𝔼[(ℓ′(𝑌 ; 𝜃∗))2] − (𝐿′(𝜃∗))2.

(Note: By first-order optimality, 𝐿′(𝜃∗) = 0, so 𝐽 = 𝔼[(ℓ′(𝑌 ; 𝜃∗))2].)
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Asymptotic normality theorem [∗]
Theorem (Asymptotic normality of M-estimators)
Under the regularity conditions stated above, as 𝑛 → ∞ the following
convergence in distribution holds:

√𝑛( ̂𝜃 − 𝜃∗) 𝑑−→ 𝒩 (0, 𝑉 ),

where the asymptotic variance is:

𝑉 = 𝐽
𝐻2 .

This is often called the sandwich formula for the asymptotic variance.
Equivalently: ̂𝜃 ≈ 𝒩 (𝜃∗, 𝑉 /𝑛) for large 𝑛.

52/70



Derivation: Key idea [∗]

The proof uses a Taylor expansion of the first-order condition.
Since ̂𝜃 minimizes the empirical loss, the derivative at ̂𝜃 is zero:

1
𝑛

𝑛

∑
𝑖=1

ℓ′(𝑌𝑖; ̂𝜃) = 0.

Taylor expanding around 𝜃∗:

1
𝑛

𝑛

∑
𝑖=1

ℓ′(𝑌𝑖; 𝜃∗) + 1
𝑛

𝑛

∑
𝑖=1

ℓ″(𝑌𝑖; ̃𝜃)( ̂𝜃 − 𝜃∗) = 0,

where ̃𝜃 is between ̂𝜃 and 𝜃∗ (by the mean value theorem).
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Derivation: Key idea (continued) [∗]
Rearranging:

√𝑛( ̂𝜃 − 𝜃∗) = −
[

1
𝑛

𝑛

∑
𝑖=1

ℓ″(𝑌𝑖; ̃𝜃)
]

−1

[
1

√𝑛

𝑛

∑
𝑖=1

ℓ′(𝑌𝑖; 𝜃∗)
]

.

Now apply:
▶ Law of large numbers: 1

𝑛 ∑𝑛
𝑖=1 ℓ″(𝑌𝑖; ̃𝜃) → 𝐻 (by consistency of ̃𝜃 → 𝜃∗).

▶ Central limit theorem: 1
√𝑛 ∑𝑛

𝑖=1 ℓ′(𝑌𝑖; 𝜃∗) 𝑑−→ 𝒩 (0, 𝐽 ).
Combining these (using Slutsky’s theorem):

√𝑛( ̂𝜃 − 𝜃∗) 𝑑−→ 𝒩 (0, 𝐽
𝐻2 ) .

54/70



Estimating the asymptotic variance [∗]
To construct confidence intervals, we need to estimate 𝑉 = 𝐽/𝐻2.
We use the plug-in principle: Replace population quantities with sample
analogs.

1. Estimate 𝐻 using the empirical second derivative:

𝐻̂ = 1
𝑛

𝑛

∑
𝑖=1

ℓ″(𝑌𝑖; ̂𝜃).

2. Estimate 𝐽 using the empirical variance of derivatives:

̂𝐽 = 1
𝑛

𝑛

∑
𝑖=1

(ℓ′(𝑌𝑖; ̂𝜃))2.

(We can do this since 𝐿′(𝜃∗) = 0, so 𝐿̂′( ̂𝜃) ≈ 0.)
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Sandwich estimator [∗]

The estimated asymptotic variance is:

̂𝑉 =
̂𝐽

𝐻̂2
.

This is called the sandwich estimator or Huber-White estimator.
The resulting estimated standard error (also called a robust standard error) for ̂𝜃
is:

ŜE = √
̂𝑉

𝑛 .
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Generalization: Vector parameters [∗]

All of the theory above extends to the case where 𝜽 is a vector of parameters.
The key generalizations are:
▶ Instead of derivatives ℓ′ and ℓ″, we use gradients ∇𝜽ℓ (a vector) and

Hessians ∇2
𝜽ℓ (a matrix).

▶ Instead of scalars 𝐻 and 𝐽 , we havematrices:

𝐇 = 𝔼[∇2
𝜽ℓ(𝑌 ;𝜽∗)],

𝐉 = 𝔼[(∇𝜽ℓ(𝑌 ;𝜽∗))(∇𝜽ℓ(𝑌 ;𝜽∗))⊤].

▶ The sandwich formula becomes: 𝐕 = 𝐇−1𝐉𝐇−1 (a matrix).
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Consistency (vector case) [∗]

Similarly to the scalar case, under appropriate corresponding regularity
conditions (identifiability and uniform law of large numbers), the vector
M-estimator is consistent (proof omitted).
Theorem (Consistency)

𝜽̂ 𝑝−→ 𝜽∗ as 𝑛 → ∞.

This ensures our vector of estimated parameters 𝜽̂ converges to the true vector
𝜽∗ as the sample size grows.
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Generalization: Vector parameters [∗]

The asymptotic normality result becomes:

√𝑛(𝜽̂ − 𝜽∗) 𝑑−→ 𝒩 (0,𝐕),

where 𝐕 = 𝐇−1𝐉𝐇−1 is the asymptotic covariance matrix.
For inference on individual components ̂𝜃𝑗 :
▶ The asymptotic variance is [𝐕]𝑗𝑗 /𝑛 (the 𝑗-th diagonal entry of 𝐕/𝑛).
▶ The standard error is SE𝑗 = √[𝐕]𝑗𝑗 /𝑛.
▶ A 95% confidence interval is: [ ̂𝜃𝑗 − 1.96SE𝑗 , ̂𝜃𝑗 + 1.96SE𝑗].
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Estimating the asymptotic variance (vector) [∗]
We use the plug-in principle to estimate the sandwich formula 𝐕 = 𝐇−1𝐉𝐇−1.

1. Estimate 𝐇 using the empirical average Hessian:

𝐇̂ = 1
𝑛

𝑛

∑
𝑖=1

∇2
𝜽ℓ(𝑌𝑖; 𝜽̂).

2. Estimate 𝐉 using the empirical outer product of gradients:

𝐉̂ = 1
𝑛

𝑛

∑
𝑖=1

(∇𝜽ℓ(𝑌𝑖; 𝜽̂))(∇𝜽ℓ(𝑌𝑖; 𝜽̂))⊤.

The estimated asymptotic covariance matrix is 𝐕̂ = 𝐇̂−1𝐉̂𝐇̂−1.

The estimated standard error for a single parameter ̂𝜃𝑗 is ŜE𝑗 = √[𝐕̂]𝑗𝑗 /𝑛.
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Appendix: OLS as an M-estimator [∗]



Example: OLS linear regression [∗]

For OLS, 𝜽 = 𝜷 and the loss is ℓ(𝑌 ; 𝜷, 𝑋⃗) = (𝑌 − 𝑋⃗𝜷)2. Here 𝑋⃗ is a feature vector;
we view it as a 1 × 𝑝 row vector.
The gradient (a 𝑝 × 1 vector) at (𝑋⃗, 𝑌 ) is:

∇𝜷ℓ(𝑌 ; 𝜷, 𝑋⃗) = −2(𝑌 − 𝑋⃗𝜷)𝑋⃗⊤.

The Hessian (a 𝑝 × 𝑝 matrix) is:

∇2
𝜷ℓ(𝑌 ; 𝜷, 𝑋⃗) = 2𝑋⃗⊤𝑋⃗.
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Example: OLS linear regression [∗]

Therefore, assuming (A1)-(A3):

𝔼[∇2
𝜷ℓ(𝑌𝑖; 𝜷,𝐗𝑖|𝐗𝑖] = 𝔼[2𝐗⊤

𝑖 𝐗𝑖|𝐗𝑖] = 2𝐗⊤
𝑖 𝐗𝑖;

𝔼[(∇𝜷ℓ(𝑌𝑖; 𝜷,𝐗𝑖)(∇𝜷ℓ(𝑌𝑖; 𝜷,𝐗𝑖)⊤] = 4𝔼[(𝑌𝑖 − 𝐗𝑖𝜷∗)2|𝐗𝑖](𝐗⊤
𝑖 𝐗𝑖).

If we assume homoskedasticity (A3), 𝔼[(𝑌𝑖 − 𝐗𝑖𝜷∗)2|𝐗𝑖] = 𝜎2 for all 𝑖, so the last
expression simplifies to 4𝜎2(𝐗⊤

𝑖 𝐗𝑖).
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Assumption for OLS asymptotics: Random design [∗]

To derive the asymptotic covariance matrix, we need an assumption about what
happens to the sequence of feature vectors 𝐗1,𝐗2, … as 𝑛 → ∞.
We adopt the random design framework:
▶ The feature vectors 𝐗𝑖 are themselves random, drawn i.i.d. from some

population distribution.
▶ The population second moment matrix 𝐐 = 𝔼[𝐗⊤

𝑖 𝐗𝑖] exists and is positive
definite.

▶ By the law of large numbers: 1
𝑛𝐗

⊤𝐗 = 1
𝑛 ∑𝑛

𝑖=1 𝐗⊤
𝑖 𝐗𝑖

𝑝−→ 𝐐 as 𝑛 → ∞.
This is the standard assumption in modern regression theory, and is natural
when the data is sampled from a population.
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Example: OLS linear regression (continued) [∗]

Under the random design assumption, the asymptotic covariance matrix is:

𝐕 = 𝐇−1𝐉𝐇−1 = (2𝔼[𝐗⊤
𝑖 𝐗𝑖])−1(4𝜎2𝔼[𝐗⊤

𝑖 𝐗𝑖])(2𝔼[𝐗⊤
𝑖 𝐗𝑖])−1

= 𝜎2(𝔼[𝐗⊤
𝑖 𝐗𝑖])−1 = 𝜎2𝐐−1.

In practice:
▶ Estimate 𝐐 by 1

𝑛 ∑𝑛
𝑖=1 𝐗⊤

𝑖 𝐗𝑖 = 1
𝑛𝐗

⊤𝐗.
▶ Estimate 𝜎2 by 𝜎̂2 = 1

𝑛−𝑝 ∑𝑛
𝑖=1(𝑌𝑖 − 𝐗𝑖𝜷̂)2.

▶ The estimated covariance matrix is V̂ar(𝜷̂) = 𝜎̂2(𝐗⊤𝐗)−1.
Thus 𝐕/𝑛 ≈ 𝜎̂2(𝐗⊤𝐗)−1 for large 𝑛; this exactly matches the OLS formula under
(A1)-(A4) (what R computes in lm).
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Appendix: Maximum likelihood estimators as
M-estimators [∗]



Special case: Maximum likelihood estimators [∗]

For MLEs, the loss function is ℓ(𝑌 ;𝜽) = − log 𝑓(𝑌 ;𝜽) (negative log-likelihood).
The first condition for an M-estimator is immediately satisfied:
Since the MLE 𝜽̂maximizes likelihood, itminimizes the empirical average loss
with ℓ defined as above.
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Special case: Maximum likelihood estimators [∗]

To show MLE is an M-estimator, we must also verify the second condition:
The true parameter 𝜽∗ uniquelyminimizes the expected population loss 𝐿(𝜽).
Proof:
Consider the difference 𝐿(𝜽) − 𝐿(𝜽∗):

𝐿(𝜽) − 𝐿(𝜽∗) = 𝔼𝜽∗[− log 𝑓(𝑌 ;𝜽)] − 𝔼𝜽∗[− log 𝑓(𝑌 ;𝜽∗)]
= 𝔼𝜽∗ [log 𝑓(𝑌 ;𝜽∗) − log 𝑓(𝑌 ;𝜽)]

= 𝔼𝜽∗ [log 𝑓(𝑌 ;𝜽∗)
𝑓 (𝑌 ;𝜽) ]

This quantity is the Kullback-Leibler (KL) divergence 𝐷𝐾𝐿(𝑓𝜽∗||𝑓𝜽).
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Special case: Maximum likelihood estimators [∗]
Proof: (Continued)
By Jensen’s Inequality, since − log(𝑥) is convex:

𝔼𝜽∗ [− log 𝑓(𝑌 ;𝜽)
𝑓 (𝑌 ;𝜽∗)] ≥ − log (𝔼𝜽∗ [

𝑓(𝑌 ;𝜽)
𝑓 (𝑌 ;𝜽∗)])

The term inside the log is:

𝔼𝜽∗ [
𝑓(𝑌 ;𝜽)
𝑓 (𝑌 ;𝜽∗)] = ∫ 𝑓(𝑦;𝜽∗) (

𝑓(𝑦;𝜽)
𝑓 (𝑦;𝜽∗)) 𝑑𝑦 = ∫ 𝑓(𝑦;𝜽)𝑑𝑦 = 1

Therefore:
𝐷𝐾𝐿(𝑓𝜽∗||𝑓𝜽) = −𝔼𝜽∗ [log 𝑓(𝑌 ;𝜽)

𝑓 (𝑌 ;𝜽∗)] ≥ − log(1) = 0

So, 𝐿(𝜽) − 𝐿(𝜽∗) ≥ 0, which means 𝐿(𝜽∗) ≤ 𝐿(𝜽) for all 𝜽. The inequalities in the
proof are strict if 𝜽∗ ≠ 𝜽, which establishes uniqueness.
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Special case: Maximum likelihood estimators [∗]

For MLEs, the loss function is ℓ(𝑌 ;𝜽) = − log 𝑓(𝑌 ;𝜽) (negative log-likelihood).
Under the assumption that the parametric model is correctly specified (i.e., 𝑌
truly follows 𝑓(𝑦;𝜽∗)), a special relationship holds:
The Fisher information matrix is:

ℐ (𝜽∗) = −𝔼 [∇2
𝜽 log 𝑓(𝑌 ;𝜽∗)] = 𝔼 [(∇𝜽 log 𝑓(𝑌 ;𝜽∗))(∇𝜽 log 𝑓(𝑌 ;𝜽∗))⊤] .

This is the information matrix equality, and it implies:

𝐇 = 𝐉 = ℐ (𝜽∗).

(Recall 𝐇 = 𝔼[∇2
𝜽ℓ] and 𝐉 = 𝔼[(∇𝜽ℓ)(∇𝜽ℓ)⊤].)
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Special case: Maximum likelihood estimators [∗]

Therefore, for MLEs under correct specification, the sandwich formula for 𝐕
simplifies:

𝐕 = 𝐇−1𝐉𝐇−1 = (ℐ (𝜽∗))−1(ℐ (𝜽∗))(ℐ (𝜽∗))−1 = (ℐ (𝜽∗))−1.

So the asymptotic distribution simplifies to:

√𝑛(𝜽̂MLE − 𝜽∗) 𝑑−→ 𝒩 (0, (ℐ (𝜽∗))−1) .
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Special case: Maximum likelihood estimators [∗]

√𝑛(𝜽̂MLE − 𝜽∗) 𝑑−→ 𝒩 (0, (ℐ (𝜽∗))−1)
This is the classical result for MLEs, and it’s the basis for asymptotic efficiency:
The Cramér-Rao lower bound states that the covariance matrix of any unbiased
estimator, 𝐂, must satisfy 𝐂 − 1

𝑛 (ℐ (𝜽∗))−1 being positive semidefinite.

For scalar 𝜃, this means that asymptotically in 𝑛, the variance of any unbiased
estimator is at least as large as the variance of the MLE.
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