MS&E 226: “Small” Data
Lecture 12: Frequentist properties of estimators (v3)

Ramesh Johari
ramesh.johari@stanford.edu
Frequentist inference
Thinking like a frequentist

Suppose that for some population distribution with parameters θ, you have a process that takes observations Y and constructs an estimator $\hat{\theta}$.

How can we quantify our uncertainty in $\hat{\theta}$?

By this we mean: how sure are we of our guess?

We take a frequentist approach: How well would our procedure would do if it was repeated many times?
Thinking like a frequentist

The rules of thinking like a frequentist:

- The parameters θ are fixed (non-random).
- Given the fixed parameters, there are many possible realizations ("parallel universes") of the data given the parameters.
- We get one of these realizations, and use only the universe we live in to reason about the parameters.
The sampling distribution

The distribution of $\hat{\theta}$ if we carry out this “parallel universe” simulation is called the sampling distribution.

The sampling distribution is the heart of frequentist inference! Nearly all frequentist quantities we derive come from the sampling distribution.

The idea is that the sampling distribution quantifies our uncertainty, since it captures how much we expect the estimator to vary if we were to repeat the procedure over and over (“parallel universes”).
Example: Flipping a biased coin

Suppose we are given the outcome of 10 flips of a biased coin, and take the \textit{sample average} of these ten flips as our estimate of the true bias q.

What is the sampling distribution of this estimator?
Example: Flipping a biased coin

Suppose true bias is $q = 0.55$.

1 universe with $n = 10$ flips:
Example: Flipping a biased coin

100,000 parallel universes, with $n = 10$ flips in each:

- $q = 0.2$
- $q = 0.8$

Sample average
Example: Flipping a biased coin

1 universe with $n = 1000$ flips:
Example: Flipping a biased coin

100,000 parallel universes, with \(n = 1000 \) flips in each:
Example: Flipping a biased coin

The sampling distribution is what we get if *the number of parallel universes* $\rightarrow \infty$.

In this case: the sampling distribution is $\frac{1}{n} \text{Binomial}(n, q)$.

Note that:

- In this case, the *mean* of the sampling distribution is the true parameter. This need not always be true.
- The standard deviation of the sampling distribution is called the *standard error* (SE) of the estimator.\(^1\)
- The sampling distribution looks *asymptotically normal* as $n \rightarrow \infty$.

\[^1\text{We also use the term “standard error” to refer to an estimate of the true SE, computed from a specific sample. In this case we write } \hat{SE} \text{ to clarify the dependence on the observed data.}\]
Analyzing the MLE
Bias and consistency of the MLE

The MLE may not be unbiased with finite \(n \). However, the MLE is asymptotically unbiased when the amount of data grows. This is called consistency.

Theorem

The MLE is consistent:

As \(n \to \infty \),

\[
\lim_{n \to \infty} \mathbb{E}_Y[\hat{\theta}_{MLE} | \theta] = \theta.
\]

In words: The mean of the sampling distribution of the MLE converges to the true parameter.
Asymptotic normality of the MLE

Theorem
For large \(n \), the sampling distribution of the MLE \(\hat{\theta}_{\text{MLE}} \) is approximately a normal distribution (with mean that is the true parameter \(\theta \)).

The variance, and thus the standard error, can be explicitly characterized in terms of the Fisher information of the population model; see Theorem 9.18 in [AoS].
Example 1: Biased coin flipping

Let \(\hat{q}_{\text{MLE}} \) be MLE estimate of \(q \), the bias of the coin; recall it is just the sample average:

\[
\hat{q}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \bar{Y}.
\]

- \(\hat{q}_{\text{MLE}} \) is unbiased, regardless of \(n \).
- The standard error of \(\hat{q}_{\text{MLE}} \) can be computed directly:

\[
\text{SE} = \sqrt{\text{Var}(\hat{q}_{\text{MLE}})} = \sqrt{\frac{1}{n^2} \sum_{i=1}^{n} q(1 - q)} = \sqrt{\frac{q(1 - q)}{n}}.
\]

- We can estimate the standard error of \(\hat{q} \) by

\[
\hat{\text{SE}} = \sqrt{\hat{q}_{\text{MLE}}(1 - \hat{q}_{\text{MLE}})/n}.
\]
- For large \(n \), \(\hat{q}_{\text{MLE}} \) is approximately normal, with mean \(q \) and variance \(\hat{\text{SE}}^2 \).
Example 2: Linear normal model
(How to interpret SE’s in a regression table).

Recall that in this case, \(\hat{\beta}_{\text{MLE}} \) is the OLS solution.

- It is unbiased (see Lecture 5), regardless of \(n \).
- The covariance matrix of \(\hat{\beta} \) is given by \(\sigma^2 (X^\top X)^{-1} \). (Using similar analysis to Lecture 5.)

In particular, the standard error \(\text{SE}_j \) of \(\hat{\beta}_j \) is \(\sigma \) times the square root of the \(j \)'th diagonal entry of this matrix.

- To estimate this covariance matrix (and hence \(\text{SE}_j \)), we use an estimator \(\hat{\sigma}^2 \) for \(\sigma^2 \).
- For large \(n \), \(\hat{\beta} \) is approximately normal.
Example 2: Linear normal model

What estimator $\hat{\sigma}^2$ to use?

Recall that $\hat{\sigma}^2_{\text{MLE}}$ is the following sample variance:

$$\hat{\sigma}^2_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} r_i^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_i - X_i \hat{\beta}_{\text{MLE}})^2$$

But this is not unbiased! In fact it can be shown that:

$$\mathbb{E}_Y[\hat{\sigma}^2_{\text{MLE}}|\beta, \sigma^2, X] = \frac{n-p}{n} \sigma^2.$$
Example 2: Linear normal model

In other words, $\hat{\sigma}^2_{\text{MLE}}$ underestimates the true error variance.

This is because the MLE solution $\hat{\beta}$ was chosen to minimize squared error on the training data. We need to account for this “favorable selection” of the variance estimate by “reinflating” it. So an unbiased estimate of σ^2 is:

$$\hat{\sigma}^2 = \frac{1}{n - p} \sum_{i=1}^{n} (Y_i - X_i\hat{\beta})^2.$$

The quantity $n - p$ is called the degrees of freedom (DoF).
Example 2: Linear normal model

R output after running a linear regression:

```
lm(formula = Ozone ~ 1 + Solar.R + Wind + Temp, data = airquality)
```

<table>
<thead>
<tr>
<th></th>
<th>coef.est</th>
<th>coef.se</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-64.34</td>
<td>23.05</td>
</tr>
<tr>
<td>Solar.R</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Wind</td>
<td>-3.33</td>
<td>0.65</td>
</tr>
<tr>
<td>Temp</td>
<td>1.65</td>
<td>0.25</td>
</tr>
</tbody>
</table>

n = 111, k = 4
residual sd = 21.18, R-Squared = 0.61
Example 2: Linear normal model

In the case of simple linear regression (one covariate with intercept), we can explicitly calculate the standard error of $\hat{\beta}_0$ and $\hat{\beta}_1$:

$$\hat{SE}_0 = \frac{\hat{\sigma}}{\hat{\sigma} X \sqrt{n}} \sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n}};$$

$$\hat{SE}_1 = \frac{\hat{\sigma}}{\hat{\sigma} X \sqrt{n}},$$

where $\hat{\sigma}$ is the estimate of standard deviation of the error.

Note that both standard errors decrease proportional to $1/\sqrt{n}$. This is always true for standard errors in linear regression.
Standard error vs. estimated standard error

Note that the standard error \textit{depends} on the unknown parameter(s)!

- \textit{Biased coin flipping}: SE depends on q.
- \textit{Linear normal model}: SE depends on σ^2.

This makes sense: the sampling distribution is determined by the unknown parameter(s), and so therefore the standard deviation of this distribution must also depend on the unknown parameter(s).

In each case we \textit{estimate} the standard error, by plugging in an estimate for the unknown parameter(s).
Additional properties of the MLE

Two additional useful properties of the MLE:

- It is *equivariant*: If you want the MLE of a function of θ, say $g(\theta)$, you can get it by just computing $g(\hat{\theta}_{\text{MLE}})$.

- It is *asymptotically optimal*: As the amount of data increases, the MLE has asymptotically lower variance than any other asymptotically normal consistent estimator of θ you can construct (in a sense that can be made precise).
Additional properties of the MLE

Asymptotic optimality is also referred to as *asymptotic efficiency* of the MLE.

The idea is that the MLE is the most “informative” estimate of the true parameter(s), given the data.

However, it’s important to also understand when MLE estimates might *not* be efficient.

A clue to this is provided by the fact that the guarantees for MLE performance are all *asymptotic* as n grows large (consistency, normality, efficiency).

In general, when n is not “large” (and in particular, when the number of covariates is large relative to n), the MLE may not be efficient.
Confidence intervals
Quantifying uncertainty

The combination of the standard error, consistency, and asymptotic normality allow us to quantify uncertainty directly through confidence intervals:

In particular, for large n:

I The sampling distribution of the MLE $\hat{\theta}_{MLE}$ is approximately normal with mean θ_{true}, and standard deviation $c \cdot SE$.

I A normal distribution has $\pi/2$ of its mass within 1.96 standard deviations of the mean.

I Therefore, in 95% of our "universes", $\hat{\theta}_{MLE}$ will be within $1.96 \cdot c \cdot SE$ of the true value of θ_{true}.

I In other words: in 95% of our universes: $\hat{\theta}_{MLE} \pm 1.96 \cdot c \cdot SE$.

Quantifying uncertainty

The combination of the standard error, consistency, and asymptotic normality allow us to quantify uncertainty directly through confidence intervals:

In particular, for large n:

- The sampling distribution of the MLE $\hat{\theta}_{\text{MLE}}$ is approximately normal with mean θ, and standard deviation \hat{SE}.
Quantifying uncertainty

The combination of the standard error, consistency, and asymptotic normality allow us to quantify uncertainty directly through confidence intervals:

In particular, for large n:

- The sampling distribution of the MLE $\hat{\theta}_{\text{MLE}}$ is approximately normal with mean θ, and standard deviation \overline{SE}.
- A normal distribution has $\approx 95\%$ of its mass within 1.96 standard deviations of the mean.

In 95\% of the "parallel universes",

$$\theta - 1.96 \overline{SE} \leq \hat{\theta}_{\text{MLE}} \leq \theta + 1.96 \overline{SE}$$
Quantifying uncertainty

The combination of the standard error, consistency, and asymptotic normality allow us to quantify uncertainty directly through confidence intervals:

In particular, for large n:

- The sampling distribution of the MLE $\hat{\theta}_{MLE}$ is approximately normal with mean θ, and standard deviation \hat{SE}.
- A normal distribution has $\approx 95\%$ of its mass within 1.96 standard deviations of the mean.
- Therefore, in 95% of our “universes”, $\hat{\theta}_{MLE}$ will be within $1.96 \, \hat{SE}$ of the true value of θ.
Quantifying uncertainty

The combination of the standard error, consistency, and asymptotic normality allow us to quantify uncertainty directly through confidence intervals:

In particular, for large n:

- The sampling distribution of the MLE $\hat{\theta}_{\text{MLE}}$ is approximately normal with mean θ, and standard deviation $\hat{\text{SE}}$.
- A normal distribution has $\approx 95\%$ of its mass within 1.96 standard deviations of the mean.
- Therefore, in 95% of our “universes”, $\hat{\theta}_{\text{MLE}}$ will be within $1.96 \hat{\text{SE}}$ of the true value of θ.
- In other words: in 95% of our universes:

$$\hat{\theta}_{\text{MLE}} - 1.96 \hat{\text{SE}} \leq \theta \leq \hat{\theta}_{\text{MLE}} + 1.96 \hat{\text{SE}}.$$
Confidence intervals

We refer to $[\hat{\theta}_{\text{MLE}} - 1.96 \frac{\hat{\text{SE}}}{\sqrt{2}}, \hat{\theta}_{\text{MLE}} + 1.96 \frac{\hat{\text{SE}}}{\sqrt{2}}]$ as a 95% confidence interval for θ.

More generally, let z_α be the unique value such that $P(Z \leq z_\alpha) = 1 - \alpha$ for $N(0, 1)$ random variable. Then:

$$[\hat{\theta}_{\text{MLE}} - \frac{z_\alpha}{2} \frac{\hat{\text{SE}}}{\sqrt{2}}, \hat{\theta}_{\text{MLE}} + \frac{z_\alpha}{2} \frac{\hat{\text{SE}}}{\sqrt{2}}]$$

is a $1 - \alpha$ confidence interval for θ.

In R, you can get z_α using the qnorm function.
Comments:

- Note that *the interval is random, and \(\theta \) is fixed!*
- When \(\alpha = 0.05 \), then \(z_{\alpha/2} \approx 1.96 \).
- Confidence intervals can always be enlarged; so the goal is to construct the smallest interval possible that has the desired property.
- Other approaches to building \(1 - \alpha \) confidence intervals are possible, that may yield asymmetric intervals.
Example: Linear regression

In the regression $\text{Ozone} \sim 1 + \text{Solar.R} + \text{Wind} + \text{Temp}$, the coefficient on Temp is 1.65, with $SE = 0.25$.

Therefore a 95% confidence interval for this coefficient is: $[1.16, 2.14]$.
Example: Linear regression

If zero is not in the 95% confidence interval for a particular regression coefficient $\hat{\beta}_j$, then we say that the coefficient is *statistically significant* at the 95% level.

Why?
Example: Linear regression

If zero is not in the 95% confidence interval for a particular regression coefficient $\hat{\beta}_j$, then we say that the coefficient is *statistically significant* at the 95% level.

Why?

► Suppose the true value of β_j is zero.
Example: Linear regression

If zero is not in the 95% confidence interval for a particular regression coefficient $\hat{\beta}_j$, then we say that the coefficient is *statistically significant* at the 95% level.

Why?

- Suppose the true value of β_j is zero.
- Then the sampling distribution of $\hat{\beta}_j$ is approximately $\mathcal{N}(0, \text{SE}_j^2)$. (with large n, and linear normal model assumptions)
Example: Linear regression

If zero is not in the 95% confidence interval for a particular regression coefficient $\hat{\beta}_j$, then we say that the coefficient is *statistically significant* at the 95% level.

Why?

- Suppose the true value of β_j is zero.
- Then the sampling distribution of $\hat{\beta}_j$ is approximately $\mathcal{N}(0, \hat{\text{SE}}^2_j)$.
- So the chance of seeing $\hat{\beta}_j$ that is more than $1.96\hat{\text{SE}}_j$ away from zero is $\leq 5\%$.
Example: Linear regression

If zero is not in the 95% confidence interval for a particular regression coefficient $\hat{\beta}_j$, then we say that the coefficient is *statistically significant* at the 95% level.

Why?

- Suppose the true value of β_j is zero.
- Then the sampling distribution of $\hat{\beta}_j$ is approximately $\mathcal{N}(0, \widehat{SE}_j^2)$.
- So the chance of seeing $\hat{\beta}_j$ that is more than 1.96\widehat{SE}_j away from zero is $\leq 5\%$.
- In other words: this event is highly unlikely if the true coefficient were actually zero.

(This is our first example of a *hypothesis test*; more on that later.)
More on statistical significance: A picture
More on statistical significance

Lots of warnings:

- Statistical significance of a coefficient suggests it is worth including in your regression model; but don’t forget all the other assumptions that have been made along the way!

- Conversely, just because a coefficient is not statistically significant, does not mean that it is not important to the model!

- Statistical significance is very different from practical significance! Even if zero is not in a confidence interval, the relationship between the corresponding covariate and the outcome may still be quite weak.
Concluding thoughts on frequentist inference
You run business intelligence for an e-commerce startup.

Every day \(t \) your marketing department gives you the number of clicks from each visitor \(i \) to your site that day \((V_i^{(t)}) \), and your sales department hands you the amount spent by each of those visitors \((R_i^{(t)}) \).

\[2\] Ignore seasonality: let’s suppose the true value of this multiplier is the same every day.
A thought experiment

You run business intelligence for an e-commerce startup.

Every day t your marketing department gives you the number of clicks from each visitor i to your site that day ($V_i^{(t)}$), and your sales department hands you the amount spent by each of those visitors ($R_i^{(t)}$).

Every day, your CEO asks you for an estimate of how much each additional click by a site visitor is “worth”.\(^2\)

So you:

- Run a OLS linear regression of $R^{(t)}$ on $V^{(t)}$.
- Compute intercept $\hat{\beta}_0^{(t)}$ and slope $\hat{\beta}_1^{(t)}$.
- Report $\hat{\beta}_1^{(t)}$.

But your boss asks: “How sure are you of your guess?”

\(^2\)Ignore seasonality: let’s suppose the true value of this multiplier is the same every day.
A thought experiment

Having taken MS&E 226, you also construct a 95% confidence interval for your guess $\hat{\beta}_1(t)$ each day:

$$C(t) = [\hat{\beta}_1(t) - 1.96 \overline{SE}_1^{(t)}, \hat{\beta}_1(t) + 1.96 \overline{SE}_1^{(t)}].$$

You tell your boss:

“I don’t know what the real β_1 is, but I am 95% sure it lives in the confidence interval I give you each day.”

After one year, your boss goes to an industry conference and discovers the true value of β_1, and now he looks back at the guesses you gave him every day.
A thought experiment

How does he evaluate you? A picture:
The benefit of frequentist inference

This example lets us see why frequentist evaluation can be helpful. More generally, the meaning of reporting 95% confidence intervals is that you “trap” the true parameter in 95% of the claims that you make, even across different estimation problems. (See Section 6.3.2 of [AoS].)

This is the defining characteristic of estimation procedures with good frequentist properties: they hold up to scrutiny when repeatedly used.