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Abstract 

Parimutuel principles are widely used as an alternative to fixed odds gambling in 
which a bookmaker acts as a dealer by quoting fixed rates of return on specified wagers.  
A parimutuel game is conducted as a call auction in which odds are allowed to fluctuate 
during the betting period until the betting period is closed or the auction “called.”  The 
prices or odds of wagers are set based upon the relative amounts wagered on each risky 
outcome.  In financial microstructure terms, trading under parimutuel principles is 
characterized by (1) call auction, non-continuous trading; (2) riskless funding of claim 
payouts using the amounts paid for all of the claims during the auction; (3) special 
equilibrium pricing conditions requiring the relative prices of contingent claims equal the 
relative aggregate amounts wagered on such claims; (4) endogenous determination of 
unique state prices; and (5) higher efficiency.  Recently, a number of large investment  
banks have adopted a parimutuel mechanism for offering contingent claims on various 
economic indices, such as the U.S. Nonfarm payroll report and Eurozone Harmonized 
inflation.  

Our paper shows how the market microstructure incorporating parimutuel 
principles for contingent claims which allows for notional transactions, limit orders, and 
bundling of claims across states is constructed.  We prove the existence of a unique price 
equilibrium for such a market and suggest an algorithm for computing the equilibrium. 
We also suggest that for a broad class of contingent claims, that the parimutuel 
microstructure recently deployed offers many advantages over the dominant dealer and 
exchange continuous time mechanisms.   
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A Parimutuel Market Microstructure 
for Contingent Claims  

 

I. Introduction 

Parimutuel principles were invented in late 19th century France by Pierre Oller as 

an alternative to the bookmaker syndicates that dominated French gaming at the time.  

The parimutuel mechanism supplanted bookmaker horse racing in the United States 

beginning in the 1920’s and 1930’s facilitated in large part by the invention of the 

automatic odds calculator (or “totelizator”) by Harry Strauss.1

Recently, a number of large investment banks have adopted a parimutuel 

mechanism for offering contingent claims on various economic indices, such as the U.S. 

Nonfarm payroll report, Eurozone  Harmonized inflation, and Fannie Mae mortgage pool 

prepayment speeds.  The parimutuel mechanism employed is a call auction lasting about 

one hour for claims on the underlying index which include a variety of standard and 

exotic derivatives, including vanilla call and put options, forwards, digital options, range 

binary options, and linked buy/sell options such as risk reversals.  A unique feature of the 

microstructure is that all of the claims offered are priced in equilibrium based upon an 

implementation of parimutuel mechanism principles.  Our aim is to formalize these 

principles and point out some of the inherent advantages of the mechanism as applied to 

the recent auctions. 

As a market microstructure, the parimutuel mechanism has four distinguishing 

features:  (1) the parimutuel mechanism is a call auction market rather than a continuous 

auction; (2) relative prices of contingent claims are equal to the relative aggregate cost of 

such claims; (3) the total amount paid for the contingent claims is exactly sufficient to 

pay for the contingent claims having a positive return, that is, the mechanism is self-

funding and risk-neutral in the sense that the total premium paid for contingent claims is 

equal to the state contingent payouts for all contingent claims expiring “in-the-money2; 

(4) a unique set of endogenously determined prices is discovered; and (5) higher 

efficiency than other trading mechanisms. 

                                                 
1 Considerable empirical work has been done on the efficiency and information characteristics of 
parimutuel wagering.  See Haush, Lo, and Ziemba (1994). 
 
2 In this paper, we ignore transaction costs which can be quite significant in parimutuel gambling contexts. 
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Our approach is to formally provide a foundation for the parimutuel mechanism 

and then describe in detail the mechanism recently employed in the capital markets.  Our 

first step then is showing a foundational connection between parimutuel principles and 

the theory of market games.  In Section II, we show that a parimutuel contingent claims 

market is a natural extension of a Shapley-Shubik market game for contingent claims.3  

Thus, we connect the parimutuel mechanism to the well-developed market games 

literature and show that a parimutuel mechanism is a viable mechanism for a contingent 

claims market with endogenous price formation.  In Section III, we discuss in detail the 

parimutuel market microstructure recently employed to offer contingent claims on the 

Eurozone inflation index, U.S. economic statistics such as the nonfarm payroll releases, 

Fannie Mae mortgage pool prepayment speeds and other indices.  We show that the 

parimutuel microstructure with notional claims, limit orders, and “claim bundling” across 

states has a unique price equilibrium.  We also present a theorem which shows that all 

parimutuel mechanisms can be expressed as a solution to a general eigenvalue problem.  

Section IV discusses the efficiency and no-arbitrage characteristics of the parimutuel 

microstructure as applied to the capital markets.  In particular, we show that the liquidity 

aggregation features of the parimutuel microstructure, both across time in a call auction 

and across disparate types of contingent claims, can reduce the amount of noise around 

the fair price of such claims.  Section V concludes. 

II. Parimutuel Microstructure and Market Games 

Parimutuel principles are widely used as an alternative to fixed odds gambling in 

which a bookmaker acts as a dealer by quoting fixed rates of return on specified wagers.  

A parimutuel game is conducted as a call auction in which odds are allowed to fluctuate 

during the betting period until the betting period is closed or the auction “called.”  The 

prices or odds of wagers are set based upon the relative amounts wagered on each risky 

outcome.  In microstructure terms, wagering under parimutuel principles is characterized 

by (1) call auction, non-continuous trading; (2) riskless funding of claim payouts using 

the amounts paid for all of the claims during the auction; (3) special equilibrium pricing 

conditions requiring the relative prices of contingent claims equal the relative aggregate 

                                                 
3 See Shapley and Shubik (1977). 
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0

amounts wagered on such claims; and (4) endogenous determination of unique state 

prices. 

When applied to the theory of contingent claims markets, the self-funding and 

relative pricing features of a parimutuel system result from the guaranteed existence of a 

positive state price vector, p, which excludes arbitrage over the state space.4  The vector  

p  contains the prices for each elemental state outcome.   

We will show that the existence of the positive state price vector combined with 

enforcing the equality of the aggregate payouts for each state are sufficient to guarantee 

that contingent claims are both self-funding and that the relative prices of claims are 

equal to the relative amounts paid for such claims.  Assuming no transaction costs, and 

for purposes of this discussion, zero interest rates, the absence of arbitrage requires the 

following normalization condition on the state prices: 

     ,     (1) ,1 >= pepT

where  p  is a strictly positive S-dimensional vector of state prices (probabilities),  e  is an 

S -dimensional unit vector, and superscript T is the familiar transpose operator.  

Multiplying by a vector  y, an S -dimensional vector containing the aggregate state 

payouts for each state, yields the riskless condition that all payouts are identical across 

the states: 

yepy =)( T      (2)  

Since the left-hand side of (2) is a vector containing the aggregate premium investment, 

(2) states that the state contingent payout of each state is equal to the aggregate premium 

investment, i.e., that total amounts paid for all of the contingent claims are equal to the 

total contingent payouts.  And since there is no arbitrage, the pricing system is linear, so 

that clearly: 
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4  We employ the term state space to include the usual formalism, i.e., a set Ω contains an algebra of 
events, F, for which there exists a probability measure P: F  [0, 1] satisfying  P(Ø) = 0 and  P(Ω) = 1 and 
for any disjoint events A and B: 
     )()()( BPAPBAP +=∪ . 
The triple (Ω, F, P) is called a probability state space, or “state space.”  See Duffie (1992), Appendix A. 
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where ps and ys  are the s-th elements of the vector p and y, respectively.  This condition 

states that the relative prices of each fundamental state contingent claim is equal to the 

aggregate relative amounts paid for the respective claims. 

In addition, parimutuel principles include a market structure for arriving at the 

equilibrium prices in which state prices are discovered endogenously via a call auction 

process.  It is the endogenous nature of the price discovery which provides a fundamental 

connection of parimutuel principles, “market games” to be discussed next, and the 

contingent claims and market microstructure research. 

The seminal paper of Arrow (1964) demonstrated the equivalence of a 

competitive exchange economy for contingent commodities with an economy which has 

a complete and competitive securities market and a spot market in the commodities.  In 

this competitive analysis, the securities market has contingent claims prices which are 

fixed exogenously.  Since prices are fixed, each agent’s demand has a negligible effect on 

the price.  Subsequent research has shown that this equivalence result depends crucially 

on the competitive nature of the securities markets.  For example, Peck, Shell, and Spear 

(1992) show that if the securities market is modeled using a noncooperative market game 

with endogenous price formation, then the Arrow equivalence result no longer holds.  See 

also Weyers (1999). 

The market microstructure literature is largely concerned with endogenous price 

formation where each agent’s demand has a potentially significant impact on the market 

price.  Outside the finance literature, there exists a large body of research utilizing the 

theory of noncooperative market games to model endogenous price formation.  An 

influential paper by Shapley and Shubik (1977) introduced a noncooperative market 

game for a market with commodities and fiat money but with no uncertainty.  In the 

Shapley-Shubik market game (“SSMG”), each trader consigns his endowment of each 

commodity to a trading post dedicated to that commodity.  Trade occurs with each trader 

bidding some of his fiat money to each trading post.  When the trading period ceases, the 

equilibrium price of each commodity is the sum of all the bids in fiat money committed 

to a trading post divided by the total quantity of commodity consigned to that post.  Each 

trader receives an amount of goods resulting from his bid of fiat money equal to his bid 

divided by the equilibrium price.  Shapley and Shubik (1977) and subsequent papers 

show that an interior Nash Equilibrium (“NE”) always exists and that the NE converges 
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to a competitive equilibrium as the economy is replicated.  See, for example, Powers, 

Shubik, and Yao (1994).   

The SSMG framework has been applied to markets with uncertainty by Peck, 

Shell, and Spear (1992) and Weyers (1999) as indicated above.  Our intent here is to 

analyze an SSMG market adapted to contingent claims over a state space, i.e., we are 

interested in the securities market microstructure which may be generally applicable to 

derivatives and other contingent claims markets.  We first show that the SSMG market 

game with a credit policy restriction on selling is a parimutuel market microstructure.  

The credit policy, which is defined further below, requires that selling be done on a 

secured or collateralized basis. 

Proposition 1:  A Shapley-Shubik market game for contingent claims within a 

probability state space with secured selling is a parimutuel market. 

Proof:  The following notation is required: 

J agents indexed j = 1, 2,…, J; 

S states indexed s = 1, 2,…, S; 

wj(o), initial wealth of agent j; 

ws
j(f), final wealth of agent j in state s; 

bs
j, agent j’s bid in dollars for state contingent claim s; 

xs
j, agent j’s offer in dollars for insuring contingent claim s; and 

ps, price for state s. 

First we define the Shapley-Shubik market game model.  In the SSMG model, 

each trader makes bids and offers to each trading post, where each trading post 

corresponds to a contingent claim within a probability state space.  As in the classical 

SSMG, prices are equal to the ratio of total money bids divided by total commodity 

consignments or offers for each trading post.  For a contingent claims market using the 

above notation, endogenous price formation therefore takes the following well-known 

functional form 
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Each state contingent claim price is therefore the sum total of bids in units of money 

(e.g., dollars) divided by offers in units of money.  The offers can be interpreted as sales 

of the contingent claim, or offers to payout 1 unit of state contingent insurance should the 

state corresponding to the trading post be realized.  

Based upon the preceding notation, the budget constraint for agent j is therefore 

. ..., 1,2,   ,)()(
11

Ssx
p
bpxbowfw

S

s

j
s

s

j
s

s
j

s

S

s

j
s

jj
s =∀−++−= ∑∑

==

  (5) 

We assume interest rates are zero and there is no production.  Thus, the initial and 

final wealth in the economy are equal 
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as implied from the definition of price  ps,
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We refer to this condition as the market clearing condition.  Summing over s yields the 

initial (i.e., at the time of premium settlement) market clearing condition that total 

premiums paid equal total premiums sold, or: 
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Since all the states comprise a state space, it is required that: 
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Clearly, nothing so far developed prevents sellers of claims (i.e., sellers of 

“insurance”) from defaulting.  To address the possibility of default, we assume that the 

market imposes the following credit restriction on offers of notional insurance. 
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Define a credit policy as follows:  Total offers of notional insurance for any state 

must be secured by at least the total premiums sold for all of the states, i.e.,  
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Substituting from the market clearing condition, yields: 
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Since the states comprise a probability state space, 

.1
1

=∑
=

S

s
sp

      
(13) 

Thus, it must be the case that 
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which states that the price of each state is equal to the total bids for that state divided by 

the total bids for all of the states.  Thus, the equilibrium pricing condition for the 

Shapley-Shubik market game for contingent claims requires the relative prices of 

contingent claims to equal the relative aggregate bids for the respective claims.  Since the 

SSMG is also a call auction market which is self-funding with endogenous price 

determination, the SSMG for contingent claims is parimutuel.  

 We can also interpret Proposition 1 in the following way.  Each trader who makes 

an offer for a contingent claim (i.e., a sale of notional insurance) is required to post 

margin.  The margin amount is equal to the premium proceeds.  This is a standard 

practice at most options exchanges and is known as premium margin.  Proposition 1 

requires that the total amount of notional insurance on offer for any state cannot exceed 

the total premium margin deposited.  At most options exchanges, an additional amount of 

margin related to the risk of the option sold is also required (oftentimes known as 
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additional margin as is the case at Eurex Clearing A.G., the clearinghouse for the Eurex 

exchange).  As no additional margin is required by Proposition 1, we interpret the credit 

policy to be not overly tight, especially as compared to existing margin mechanisms in 

use.   

Proposition 2:  The credit policy constraint requiring the total notional offers of 

insurance for any state not exceed the total premiums sold can always be satisfied, i.e., it 

is never binding. 

Proof:  It can easily be shown that any notional sale can be replicated through a 

purchase of complementary states within the state space over which claims are traded so  

that 
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Consider a notional sale where  

.for    0  and  0 ksxx j
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j
s ≠=>

  
 (16) 

 

In this case, agent j sells a claim on state s and on no other state.  We use the term 

replicated sale to denote the strategy of bidding on the complementary states to state s in 

the following way5: 

.for      and  0 ksxpxb j
kk

j
k

j
s ≠==

   
(17) 

 

The bid on the s-th state of the replicated sale is 0, whereas bids on all other states are 

non-zero.  To ensure the replication is available, we allow the trading post for each state- 

contingent claim to open with an arbitrarily small bid and offer, i.e.,  

 

, ..., 1,2,,0)(   ,0)( Ssxb ss =∀→→ εε
  

(18) 

 

where the arguments b and x indicate the small amounts of existing bids and offers 

allocated to each state, where these amounts are vanishingly small.6  In equilibrium, the 

profits of a replicated sale are identical to those of the original notional sale, 

                                                 
5  We note that bidding on all of the states proportional to the price achieves the “autarky” strategy 
of effecting no change in each agent’s endowments. See Peck, Shell, and Spear (1992). 
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i.e., the final wealth from the replicated sale is identical to the original notional sale for 

each state.  Any notional sale can therefore be replicated into a complementary bid which 

satisfies the credit policy, and therefore replicated sales are payout-achievable.   

We have yet to show that an equilibrium exists with such replication going on 

during the auction.  We turn to this next, and show that any arbitrary number of 

replications has a fixed-point equilibrium. 

Proposition 3:  A unique parimutuel equilibrium exists with replicated sales 

which are used to satisfy the credit policy. 

Proof:  Consider a notional sale where  

.for    0  and  0 ksxx j
k

j
s ≠=>  

As indicated above, the replicated sale strategy is 
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By the Banach Fixed Point Theorem, there exists a fixed point strategy bid for the 

differentiable function  g  if there exists a constant  z < 1 such that
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From the market clearing condition, above, 

                                                                                                                                                 
6  These small liquidity amounts take the place of the usual SSMG convention that the quantity 0/0 
owing to zero bids and offers is equal to 0. 
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completes the proof.  Uniqueness follows from the contraction property of the mapping 

that leads to the fixed point. 

Proposition 4:  The SSMG and a parimutuel market have equivalent payouts and 

first-order optimality conditions. 

Proof:  See the appendix.7

The first order conditions for the SSMG equilibrium can readily be shown to be: 
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which shows that the ratio of expected marginal utilities is equal to the ratio of state 

contingent prices, i.e., the competitive Arrow-Debreu economy result, multiplied by the 

term in brackets.  These are the same oligopoly conditions derived in Shapley-Shubik 

(1977).  The oligopoly conditions depend on the ratio of the size of trader i’s bid in each 

state to the total amount of bids in that state excluding trader i’s bid.  They therefore 

measure the market’s ability to absorb trader i’s bid strategy.  As trader i’s bid strategy 

becomes smaller relative to the total bids on each state, the market approaches the 

competitively optimal market 

III. Parimutuel Microstructure for Contingent Claims 

In this section we describe the parimutuel microstructure recently used to auction 

off claims on U.S. economic data releases such as nonfarm payrolls, retail sales, and 

production indices as well as the Eurozone Harmonized inflation index (ex tobacco 

prices) and Fannie Mae mortgage pool prepayment speeds.   Our goal is to show that the 

parimutuel market has been designed in a manner which yields contingent claims familiar 
                                                 
7 Rather lengthy proofs are available at the Appendix.  
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to market participants in existing derivatives markets.   For example, one feature of the 

parimutuel market microstructure is that all trading strategies are implemented with bids 

and offers of notional amounts of risky claims.  In the Shapley-Shubik contingent claims 

market game of Section II, agents implement strategies with offers of notional insurance 

xs
j and bids of premium dollars, bs

j.  Conventionally, however, derivatives contracts are 

based upon the notional amount to be bought or sold and not denominated in premium 

dollars.  The purchaser of an option, say on the dollar-yen foreign exchange rate, will 

specify a desired size of the position in notional terms, e.g., 10 million dollars, rather than 

in terms of the amount of desired premium outlay.   

We show next that the parimutuel microstructure allows trading strategies to be 

implemented with limit orders, whereby a trader may specify a reservation price above 

(below) which the specified purchase (sale) of a given contingent claim will not be 

executed.  Limit prices have heretofore not been used in parimutuel games. 

A. Development of the Parimutuel Microstructure: Definitions and Setup 

In this section, we develop the concepts and mathematical notation needed to 

adequately describe the parimutuel contingent claims microstructure recently used in the 

capital markets in which trader strategies can be implemented with (1) a notional buy or 

sell order; (2) a vector of payout ratios corresponding to a range of states (claim 

bundling); and (3) a limit price. 

To begin, we let U denote the value of an underlying variable selected for a 

parimutuel auction—for example, this variable may be the value of an upcoming release 

of an economic statistic such as Eurozone Harmonized Inflation index.  Before the start 

of the auction, the strikes for the options to be traded on the underlying are determined. 

The option strikes are set across the range of likely outcomes of the underlying to 

maximize interest in the claims being offered.  Let k1, k2, . . . , kS-1 denote the option 

strikes and let 

 

k1 < k2 < . . .  < kS-1                                                          (23) 

 

assuming, for simplicity, that the underlying U cannot take on any values between any 

two strikes.  These S-1 strikes divide U into S states as shown in the first two columns of 
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Table 1.  Associated with each of these S states are S state contingent claims that pay out 

if and only if that particular state occurs. 

 Prior to the opening of the parimutuel call auction, the financial intermediary 

hosting the auction enters orders for each of the S state contingent claims.  We refer to 

these orders as the opening orders.  Let the opening order premium be denoted as θs for 

s=1, 2, …, S such that  

Sss  , . . .  ,2 ,1     0 =>θ     (24) 

 

Though opening orders can be small relative to the customer orders, opening orders 

ensure that the parimutuel equilibrium prices are unique.   

 

Table 1.  The states, outcomes, and state contingent claims in a PDCA auction.   
 
State Outcome State Contingent Claim 
1 U < k1 Digital put struck at k1
2 U = k1 Digital range with strikes of k1 and k2
. . . . . . . . .  
s-1 U = ks-2 Digital range with strikes of ks-2 and ks-1
S U = ks-1 Digital range with strikes of ks-1 and ks
s+1 U = ks Digital range with strikes of ks and ks+1
. . . . . . . . .  
S-1 U = kS-2 Digital range with strikes of kS-1 and kS-2
S U ≥ kS-1 Digital call struck at kS-1

 

 

In the parimutuel market recently run on Eurozone inflation, customers submitted 

option orders to buy or sell options following standard option market protocols.  For 

notation, assume that customers submit a total of J orders in the auction, indexed by j=1, 

2, . . . , J. When submitting an order, the customer requests a specific number of 

contracts, denoted by rj.  For digital options, we adopt the convention that one contract 

pays out $1 if the digital option expires in-the-money.  For vanilla options, we adopt the 

convention that one contract pays out $1 per point that the option is in-the-money.   The 

parimutuel mechanism is novel with respect to existing parimutuel wagering schemes in 

that customers can specify a limit price for each order, as is done at exchanges including 

the New York Stock Exchange and the Chicago Board of Trade, i.e.,  the limit price for a 

purchase of an option represents the maximum price the customer is willing to pay for the 



  

  
 

15

                                                

option specified.  The limit price for a sell of an option represents the minimum price at 

which the customer is willing to sell the option.  We use wj to denote the limit price for 

customer order j. 

The parimutuel mechanism replicates each option using the auction’s state 

contingent claims.  For notation, let aj,s represent the notional payout amount of state 

contingent claim s used to replicate customer order j.  Recall, for instance, from Table 1 

that the first state contingent claim is the digital put struck at k1.  Therefore, aj,1 is the 

notional amount of the digital put struck at k1 used to replicate order j.  We require aj,s to 

be non-negative, and we refer to the vector [aj,1, aj,2, . . . , aj,S] as order j’s replication 

weights.   

 The mechanism determines the replication weights to match order j’s payouts.  

For example, a digital call pays out a fixed amount if, upon expiration, U is greater than 

or equal to its strike, denoted as kv.  If order j is a buy order for this option, then the 

replicating weights are  

⎩
⎨
⎧

++=
=

=
Svvs

vs
a sj  , . . . 2, 1,     1

 , . . . 2, 1,     0
,       (25) 

This set of state contingent claims pays out if U is greater than or equal to kv, matching 

the payouts of the digital call.  If order j is a buy of a vanilla call spread with strikes kv 

and kw with kv < kw, then the replicating weights are8

 

⎪
⎩

⎪
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⎧
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+=

= −

Swws k k
wvvskk

vs
a
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 , . . . ,2 ,1     
 , . . . 3,  2,      

1 , . . . 2, 1,                 0

1,      (26) 

 

For a sell of digital call option struck at kv, the customer profits if U is less than kv at 

expiration.  In this case,  

 
8 If the underlying U can take on values between adjacent strikes, then the replicating weights for a vanilla 
call spread become 
 

⎪
⎩

⎪
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⎧

++=−
++=−<≤

=
= −
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vsssj
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 , . . . 2,  1,      ]|[

 , . . . 2, 1,                                         0

1,

    

 
In this case, the replicating weights are based on the conditional expected value of the underlying.   
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⎩
⎨
⎧

++=
=

=
Svvs

vs
a sj  , . . . 2, 1,     0

 , . . . 2, 1,     1
,       (27) 

 

The mechanism replicates other options, such as digital puts and vanilla put spreads in a 

similar fashion. 

Let ps denote the equilibrium price of the sth state contingent claim for s = 1, 2, 

..., S.  such that the price of each state contingent claim is positive and that the prices of 

the state contingent claims sum to unity.  Mathematically,  

 

Ssps  ..., ,2 ,1     0 =>       (28) 

 

.1
1
∑
=

=
S

s
sp        (29) 

 

Note that ps has a simple interpretation as the implied probability that state s occurs and 

the sth state contingent claim expires in-the-money.    

Let πj denote the equilibrium price for the option requested in order j.  For 

simplicity of exposition, we assume here that the auction sponsor does not charge fees.  

Then  

.
1

,∑
=

≡
S

s
ssjj paπ       (30) 

 

Each option is priced as the sum of the product of the option’s replicating weights and the 

prices of the state contingent claims.  Based on equations (28) and (29), prices can be 

shown to be arbitrage-free in the sense that it is impossible to combine the options in such 

a way so as to guarantee a riskless profit.9  

Let xj denote the equilibrium number of filled contracts for order j.  If the 

customer’s limit price wj is below the parimutuel equilibrium price πj, then the order’s bid 

is below the market, and the order receives no fill, so xj = 0.  If the order’s limit price wj is 

exactly equal to the parimutuel equilibrium price πj, then the order’s bid is at the market, 

and the order may receive a fill, so 0 ≤ xj ≤ rj (recall that rj denotes order j’s requested 

 
9 See, for example, theorem 2 of Ingersoll (1987) at page 55.   
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number of contracts).  If the order’s limit price wj is above the parimutuel equilibrium 

price πj, then the order’s bid is above the market, and the order is fully filled, so xj= rj.  

Mathematically, the logic for a buy order is as follows  

 

.

,0

,0

jjjj

jjjj

jjj

rxw

rxw

xw

=→>

≤≤→=

=→<

π

π

π

    (31) 

 

The logic for a sell order proceeds in a similar manner.  As a final piece of notation, let M 

denote the total premium paid in the auction, which is the sum of the filled order 

premiums paid plus the sum of the opening orders. 

 

.
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Note that aj,s xj is the payout order j receives if state s occurs and define ys as  

.
1

,∑
=

≡
J

j
jsjs xay       (33) 

 

Here, ys is the aggregated customer payouts based on the sth state contingent claim.   In 

matrix form, we can write: 

 

.xAy T≡       (34) 

 

B. Parimutuel Equilibrium Pricing Conditions 

We now proceed to develop the mathematical formulation of the parimutuel 

equilibrium pricing conditions.  After developing the necessary notation, we first prove 

that existence of a unique parimutuel equilibrium where all orders are market orders, i.e., 

the limit order constraints are non-binding.   We then provide a general parimutuel 

representation theorem which shows that all parimutuel equilibria in our microstructure 
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are solutions to an eigenvalue problem.  In the following section, we then relax the 

restriction on limit orders and prove the existence of a unique equilibrium for arbitrary 

limit orders. 

One of the core equilibrium conditions of the parimutuel mechanism is that the 

system contains sufficient premium to exactly fund any state contingent liability, which 

can be written as follows  

 

SsM
p

y
s

s
s  , . . . ,2 ,1     ==+

θ
   (35) 

 
Here, ys is the total amount of customer payouts filled for state s and the quantity θs/ps is 

the notional payout amount of the opening order for state s.  Thus, the left hand side of 

equation (35) represents the total payout that the auction mechanism must make if state s 

occurs.  The right hand side is the total premium collected by the mechanism.  Thus, in a 

parimutuel system, the amount of premium collected is exactly equal to the amount 

needed to settle the total of filled requests for every state.  In this sense, the orders in 

parimutuel equilibrium are self-hedging.   

In another sense, equation (35) relates ys, the aggregate order payouts if state s 

occurs, and ps, the price of the sth state contingent claim.  For M and θs fixed, the greater 

the payouts ys, then the higher ps and the higher the prices of options that pay out if state s 

occurs.  Similarly, the lower the payouts ys, then the lower ps and the lower the prices of 

options that pay out if state s occurs.  Thus, in parimutuel pricing equilibrium, the 

aggregate demand for a particular state is closely related to the price for that state’s 

contingent claim.  Finally, let ms denote the total filled premium associated with state 

contingent claim s.  Then  

ms = psys + θs , s = 1, 2, …, S 

and equation (35) implies trivially that: 
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Sks
p
p

m
m

k

s

k

s  , . . . ,2 ,1,     ==
    (36)  

which states that the relative premium demand for two states is equal to the relative state 

prices for those states.  We are now in a position to state the following proposition: 

  

Proposition 5:  Given demands for orders which are expressed in the form of 

market orders, there exists a unique parimutuel equilibrium. 

Proof:   The proof is based upon a simple application of a contracting fixed point 

theorem by summing up Equation (35) over all S.  See the appendix. 

 

 We are now in a position to formulate the following theorem regarding the 

parimutuel market microstructure: 

Parimutuel Representation Theorem:  All parimutuel equilibria are solutions to 

the following eigenvalue problem: 

 

    .pHp M=       (37) 

  

Proof:  Define the matrix H, which has S rows and S columns where S is, again, 

the number of defined contingent states in the parimutuel auction, as follows 

.
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    (38)  

H is a square matrix with each diagonal entry of H is equal to yj + θs. The off-diagonal 

entries for row s are equal to θs for s = 1, 2, …, S.  Recall that p is the vector of length S 

whose s-th element is  ps.  Note that  
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Since the ps’s sum to unity (Eqn. 29) we can write  

    .     (40)  
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Rewriting Eqn. 35, we have  

ssss Mpyp =+θ .    (41)  

The left hand side of this expression is simply the s-th row of Hp.  Thus we can write  

     pHp M= ,     (42)  

which is the matrix equivalent to Eqn. 41.10   

The intuition for the eigenvalue representation is that a parimutuel pricing vector 

must lie in the null space of the net risk, since in a parimutuel mechanism all claim 

payouts are funded by premiums paid.  The net risk of the parimutuel mechanism is: 

     .IH M−      (43)  

Thus, a pricing vector which lies in the null space of the net risk means that there exists a 

solution to 

0)( =− pIH M ,    (44)  

which is the eigenvalue result.  The eigensystem representation makes it easy to see that 

the parimutuel system has a unique fixed point equilibrium.   

                                                 
10  Michael Overton of the Courant Institute of New York University first suggested to us that our 
parimutuel problem might have an interesting eigensystem representation. 
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C.   Parimutuel Limit Order Book Equilibrium

We now introduce limit orders into the parimutuel equilibrium calculations.  Limit orders 

are an important feature of the parimutuel microstructure under discussion.  Traditional 

parimutuel wagering methods do not allow for either notional trading, limit orders, or bundling 

across risky states.  These deficits render the raw parimutuel structure used for wagering less 

than optimal for use in the capital markets.  As previously mentioned, options, futures, and other 

derivatives contracts are based upon notional contract size, rather than the amount to be invested 

in such contracts.  Furthermore, parimutuel wagering markets expose participants to an excessive 

amount of transaction risk, as all wagers are executed at prices which vary throughout the 

auction period and are not known until all wagers have been made.  In the capital markets, it is 

customary to use the device of limit prices to limit transaction risk by which participants can 

assure themselves that their orders are executed only if the market price is more favorable than 

their indicated limit price.  Finally, parimutuel wagering is normally conducted in an ad hoc 

manner in which liquidity which could be aggregated within the same state space is fragmented 

into different “pools.”  For example, wagers on bets for a horse to win are held in a parimutuel 

pool which is separate from wagers on a horse to “place.”  This means that not only can there be 

arbitrage opportunities across the separate pools, the pricing within each pool is less efficient due 

to the disaggregation of liquidity.  A viable parimutuel microstructure for the capital markets 

should aggregate all liquidity within a state space, effectively allowing for the no-arbitrage 

bundling of any type of contingent claim from the fundamental state claims. 

 In the previous section, we have shown how a unique parimutuel equilibrium exists 

where limit prices are not binding, i.e., all orders are market orders.  In this section, we prove the 

existence of a unique parimutuel price equilibrium for limit orders with limit prices that can take 

any arbitrary value.   

1.  Limit Order Book Equilibrium

We regard limit orders as particularly important within the context of the parimutuel 

mechanism for two reasons.  First, they allow mitigation of execution risk owing to changing 

contingent claim prices during the auction period.  In parimutuel wagering, an early bettor 

subjects himself to the risk that the final odds are lower than when the bet was placed.  In our 

microstructure, we allow traders to control the execution price, effectively substituting a 

probability of execution at the limit price or better for the continuous change in odds faced by a 
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parimutuel bettor.  Second, limit orders are a familiar order execution mechanism in the capital 

markets which we believe should be incorporated into any viable and practicable microstructure 

for contingent claims. 

With the introduction of limit orders comes the requirement of specifying an objective 

function for determining, subject to the satisfaction of the limit price constraints, which orders 

are executed in equilibrium.  We choose to maximize the total volume of notional orders that can 

be executed subject to the limit price constraints.  We do this for two reasons.  First, we take as 

our definition of “liquidity” the maximum amount of notional value that can be accommodated 

in the auction subject to limit price constraints.  Thus, the choice of objective function reflects 

the definition of liquidity which we are trying to maximize.  Second, it is anticipated that the 

sponsor of the auction will earn transaction fee income as a percentage of notional for each 

order.  Our choice of objective function therefore reflects choosing the set of orders that generate 

maximum fee income. The optimization problem can therefore be written in the following form: 
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    (45) 

 

Based upon this representation of the parimutuel equilibrium with limit orders, the 

following proposition can be stated. 
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Proposition 6:  The parimutuel limit order book problem has a unique price  

equilibrium in state prices when there are non-zero opening orders on each state. 

 Proof:  The proof is based upon fixed point continuation methods.  See the 

appendix. 

 In practice, the sponsor of the auction can guarantee that there are non-zero 

opening orders on each state.  Proposition 6 establishes the uniqueness of state prices but 

does not guarantee the uniqueness of the executed order amounts in equilibrium.  The 

uniqueness of state prices is based upon fixed point methods which are independent of 

the maximand (in Eqn. 45, the maximand is M, the total premium executed in 

equilibrium).  There are S-1 possible degrees of freedom in the executed order amounts in 

equilibrium, meaning that the maximum number of orders which are partially executed is 

equal to one less the number of states.  As in most microstructure mechanisms, the 

allocation of partially filled orders is not unique under equilibrium prices but is instead 

typically determined by “priority rules”, such as time priority or pro rata allocation.  In 

the maximization of Eqn. 45, the priority rule used for the partially filled orders is to 

allocate them so as to maximize the total price-weighted volume which is equal to the 

option premium subject to the unique and already determined equilibrium state prices.   

Since the maximization for the partially filled orders is undertaken with respect to fixed 

equilibrium state prices, the optimization problem is a linear program.  There may be 

more than one solution for the partially filled orders under this linear program. 

 

2.  An Example of Limit Order Book Equilibrium

We provide a simple example of the solution of the parimutuel limit order book 

problem.  In our example, we use the following input data: 

S = 5 states 

J = 8 orders 
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θ = ,  e =  r = ,  w = ,  A =  
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The solution to the optimization problem is:11

x* = ,   y* = ,  M* = 218.571 
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The interpretation of this example is as follows.  There are 5 contingent states 

representing the fundamental Arrow-Debreu securities.  There are 8 submitted orders, as 

represented in the matrix A, each row of which contains a 1 if the order spans the state 

represented in the first column, and zero otherwise.  For example, the first row of A 

indicates a digital put option which would pay 1 unit per quantity requested should either 

of the first two states occur.  The quantity requested, or order size, is represented in the 

vector r.  For example, the first row of r is equal to 100, indicating that the order size for 

the digital put spanning the first two states is 100.  The limit prices are contained in the 

vector w.  For example, the first row of w indicated a limit price of 0.4 for the first order, 

 
11 Details on the computer algorithm used to solve this example are available from the authors. 
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a digital put spanning the first two states of quantity equal to 100.  The limit price 

indicates that the purchaser of this digital put would like to have his order executed, in 

equilibrium, at a price of 0.4 per unit of claim (40 in total) or lower.  A search procedure 

is used to find the equilibrium based upon the optimization in Eqn. (45).  The results of 

solving the equilibrium include the equilibrium amounts that can be executed for each 

order (contained in the vector x*), the total amount of executed fill for each state (the 

vector y*), the total amount of premium paid for the executed claims in equilibrium 

based upon their equilibrium prices (the scalar M*), and the equilibrium prices of the 

fundamental states (the vector p*).  The search procedure needs to run to a high level of 

tolerance which is why p is reported to a high level of precision.   

 The equilibrium results can be understood by examining the first three orders.  

The first order for a digital put spanning the first two states for quantity equal to 100 and 

a limit price of 0.4 is fully filled, as can be seen from the first row of x*.  It is fully filled 

in equilibrium since the price of a digital put spanning the first two states is the sum of 

the first two rows of the equilibrium state prices, as shown in p*, which is equal to 

approximately 0.191.  Since 0.191 is less than the limit price of 0.4 for this order, the 

order must be fully filled in equilibrium which is the case.  The second order spans the 

last two states, as seen from the second row of A, and therefore should be interpreted as a 

digital call covering the last two states.  From the second rows or r and w respectively, 

the order is one to purchase 200 units at a price of 0.8 or lower.  As can be seen from the 

equilibrium results in the second row of x*, the order is partially filled at 109.56 out of 

the requested 200.  The price of the order is equal to the sum of the last two state prices in 

p* or 0.8.  Since the order’s equilibrium price is equal to its limit price it may receive a 

fill anywhere between 0 and the 200, the requested amount.  Finally, order three is a 

digital range spanning the third and fourth states, for 300 units, at a limit price of 0.7.  As 

can be seen by adding the third and fourth rows of p*, the equilibrium price of this claim 

is equal to approximately 0.709.  Since this is higher than the indicated limit price of 0.7, 

the order’s executed amount in equilibrium is zero, as indicated by the third row of x*. 

 

III.  Parimutuel Microstructure:  Arbitrage and Efficiency Considerations
 



  

  
 

26

We believe the parimutuel microstructure proposed and analyzed in Section II 

compares favorably to other microstructures that may be used for contingent claims 

trading.  We think the parimutuel microstructure under discussion may be superior to 

dealer-based and currently used exchange structures for a wide variety of risks.  We 

believe that the parimutuel microstructure described in this paper is especially superior 

for those risks which do not have tradable underlying securities or instruments.  We 

organize our discussion of the benefits of our microstructure into the following six areas: 

(1) risk-neutrality; (2) the absence of arbitrage; (3) efficiency; (4) price uniqueness; (5) 

multilateral order matching and; (6) information production. 

A. Risk Neutrality12 
 
Parimutuel principles entail a self-funded auction of contingent claims:  all 

premium collected, excluding transaction costs, is exactly sufficient to pay for all state 

contingent payouts.  From a dealer perspective, the parimutuel microstructure will be 

preferable to standard OTC transactions for certain types of derivatives risks.  For 

example, a dealer in fixed income derivatives will likely find the proposed parimutuel 

microstructure favorable for transacting options on the monthly announcement of the 

level of the Eurozone Harmonized inflation index since there is no underlying security or 

hedgeable instrument.    

The proposed parimutuel microstructure effects an arbitrage-free and riskless set 

of contingent claims prices and order executions.  Effectively, the mechanism achieves 

what a dealer would need to do manually through hedging activity in an underlying 

instrument (where available) and through balancing risk by adjusting prices with trading 

counterparties to equilibrate net notional transactions across states.  We think this 

simplicity and efficacy of the parimutuel microstructure as adapted to the capital markets 

is therefore a potentially useful complement to the traditional OTC dealer market 

structure, especially for types of risks which have no tradable underlying. 

We also think that the proposed parimutuel microstructure is superior to 

conventional exchange-based continuous double auctions for some types of illiquid risks.  

For example, for a number of years the Chicago Board of Trade (CBOT) has offered 

                                                 
12  By “risk-neutrality” we mean that the parimutuel auction is self-funding in the sense that premium 
inputs equal state contingent outputs. We do not mean to suggest a connection to the continuous time 
options literature which is focused on risk-neutral pricing. 
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options on insurance catastrophe losses as measured by indices published by the Property 

Claims Service (PCS).  The microstructure used to transact these claims is a conventional 

continuous double auction, i.e., the same mechanism that is used to trade the highly liquid 

bond futures and options at the CBOT.  While there are perhaps reasons why the PCS 

contracts have failed to attract liquidity which are unrelated to market microstructure, see, 

e.g., Cummins and Mahul (2000), we believe that the conventional microstructure may be 

a significant impediment to liquidity, as we discuss further below. 

B. Arbitrage-free Claims 
 
A parimutuel system is arbitrage-free in the sense that there exists a positive state 

price vector which excludes arbitrage.  Following the standard definitions (see Ingersoll 

(1987), p. 57), we can define the returns table, Z, of a parimutuel state space as follows: 

        (46) 1)( −= πAZ diag

Now, it is well known that if there exists a state pricing vector p supporting the returns 

table such that: 

     1=Zp       (47)  

then there exists no arbitrage possibilities in the sense that there exists no investment η 

across the states which solves either:13

strictly) (one 0
0
≥

≤

ηZ
ηe

T

T

        (48) 

or        
.0

0
≥

<

ηZ
ηe

T

T

In the proposed parimutuel market microstructure, a definition is that all contingent claim 

prices are linear combinations of the state prices, i.e.,  

Apπ = .     

Multiplication of this definition by diag(π)-1 establishes that there is a supporting state 

price vector and that no arbitrage is possible by construction of the parimutuel 

microstructure.   

The claim bundling feature of our parimutuel microstructure by definition rules 

out arbitrage in the above-defined sense.  A market for state contingent claims, even a 

                                                 
13  See Ingersoll (1987), pp. 54-57 for the elementary proof. 
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call auction like the parimutuel mechanism under discussion, need not enforce the no-

arbitrage condition explicitly.  Namely, we can readily envision a contingent claims 

market for a state space which can be modeled without such explicit restrictions as 

follows:  
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   (49)  

which are limit order conditions without the parimutuel and no-arbitrage price 

restrictions.  In such a market, presumably arbitrageurs would devote capital to ensuring 

that arbitrage would be excluded from the prices.  The parimutuel mechanism enforces 

the normalization of state prices and the absence of such arbitrage endogenously within 

the microstructure.   

C. Efficiency of Parimutuel Price Discovery 
 

The enforcement of the no arbitrage conditions leads naturally to the following 

welfare result on the efficiency of the parimutuel microstructure compared to a model in 

which contingent claims are traded separately in a call auction over a state space (the 

“trading post” model).  Essentially, the parimutuel market as implemented in this paper 

leads to more efficient (less noisy) prices because the mechanism utilizes information on 

bids and excess demands in all individual markets (trading posts).  Put it differently, the 

parimutuel mechanism as implemented discovers prices that reflect information from all 

“trading posts” markets, and this makes the prices reflect more efficiently trading 

conditions in all posts. 

Proposition 7: A parimutuel microstructure discovers prices for contingent 

claims such that the average order’s standard deviation around fair value is less than a 

microstructure with separate call auction trading posts for each claim.  The average 

order noise savings is equal to 

     MM σασαδ 0.29)()
2

12( ≅
−

=    (50) 

where 
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δ= savings due to parimutuel microstructure 
 
M = total premium in system 
 
σ = average volatility of price error around the true price (“noise volatility”) 
 
α = bid/offer spread assumed proportional to average noise volatility 

 

Proof:  See the appendix. 

 

 We also note that the parimutuel mechanism has an additional efficiency gain 

over the traditional continuous market because of the time aggregation of orders provided 

by the call auction itself.14

 There is suggestive empirical evidence supporting the preceding efficiency result.  

Gabriel and Marsden (1990) and Gabriel and Marsden (1991) examine British betting on 

horses in which parimutuel and bookmakers make prices simultaneously.  The 

bookmakers offer odds on wagers using the “starting price” odds convention, whereby a 

bookmaker takes a bet at odds formed by a consensus of bookmakers just before the race 

is run.  Thus, both the parimutuel and starting price odds reflect odds just before the race 

is run.  On the same sample of races, Gabriel and Marsden (1991, Table 1), find that 

parimutuel returns on the same races are about 28.7% higher, almost exactly the amount 

of efficiency owing to the parimutuel system predicted in Proposition 7. 

D. Price Uniqueness 
 

The parimutuel microstructure possesses a unique price equilibrium for a given 

set of opening orders and other orders for contingent claims.  Not all microstructures of 

this class need possess unique equilibrium prices. Consider, in this regard, the following 

modified microstructure similar to the parimutuel discussed in Section II above: 

                                                 
14  See Economides and Schwartz (1995). 
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This microstructure problem is otherwise identical with that of Eqn. 45 except that the 

parimutuel constraint has been replaced with a weaker constraint in Eqn. 51.  The 

constraint in Eqn. 51 merely requires that the state contingent payouts for each state be 

equal. This microstructure has some parimutuel features in the sense that elemental state 

claims are normalized, exhibit no arbitrage, and relative prices are equal to relative 

premium investments for each pair of states.  Yet, there exists no unique set of state 

prices which satisfy Eqn. 51.  To see this, we consider a state space with three states.  

Assume that there are 3 orders: a limit buy order for 300 notional covering state 1 at limit 

price of .3, a limit buy order for 200 notional covering state 2 at limit price of .4, and a 

limit buy order for 100 notional covering state 3 at limit price of .5.  Clearly, any state 

probabilities satisfying 
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is a solution to Eqn. 51, and there are obviously many such solutions, which will satisfy 

the risk neutrality constraint that all state payouts are equal.  For example, one such 

solution is 



  

  
 

31

100
1

5.
25.
25.

321332211

321

3

2

1

====++
=++

=
=
=

yyyypypyp
ppp

p
p
p

 

 By contrast, the parimutuel microstructure we propose, embodied as the solution 

to Eqn. 45, possesses a unique set of state prices.  In the simple example, under 

consideration, we assume that there exists opening orders on each state of one unit so that 

1321 === θθθ . 

The unique solution is: 
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E. Multilateral Order-Matching 
 

The parimutuel microstructure we propose is fundamentally a multilateral order-

matching mechanism, by which we mean there exists no requirement of a discrete order 

match between a single buyer and a single seller.  Rather, the order-matching mechanism 

is inherently “many-to-one” in the sense that any given contingent claim’s payout is 

funded multilaterally by all of the other orders which are filled in equilibrium.  We regard 

this feature as particularly important for claims for which there is no tradable underlying 

and for which there is not a natural demand for a continuous time market.  For example, 

we regard our market microstructure to be of potential use to trade contingent claims on 

weather, economic statistic releases, corporate earnings releases, and mortgage 

prepayment speeds. 

The character of our parimutuel microstructure is influenced greatly by the 

commitment of opening orders, |θ|.  For |θ| = 0, the microstructure resembles a 

multilateral matching mechanism in which state prices are normalized, but are not 
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necessarily unique.  For |θ| ∞, all orders which have limit prices better than the prices 

reflected in the opening orders will execute, and will have no impact on the state prices.  

Thus, large |θ| will tend to resemble a dealer microstructure in the sense that the dealer 

may bear significant risk that the distribution reflected in the opening orders distribution 

will depart from the “true” distribution.  We believe the parimutuel microstructure we 

propose will tend to be most attractive at small values of θ.  We define small such that 
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jj
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, 

i.e., that the ratio of total premium filled in equilibrium to the total amount of opening 

orders is greater than 1,000 and less than 10,000. 

F. Information Production 
 

Our parimutuel microstructure discovers state prices through a state space 

partition of an underlying probability distribution.  It therefore discovers the probability 

density function implied by actual trading activity in a transparent and natural way.  

Some experimental data show that standard parimutuel mechanisms have the ability to 

aggregate private information (see Plott, et al., 1997) into the market density function. 

We think the implied density produced in our microstructure will be an important and 

high quality informational externality to the market.  The quality of the implied density 

will be high since the density itself is being traded “piece by piece” in our microstructure.  

The density discovered on our microstructure is always enforced to be a probability state 

space by design.  Continuous time options markets, by contrast, produce asynchronous 

option prices at strikes which have varying liquidity and price noise.  As a consequence, 

the traditional techniques used to extract implied density functions from continuous 

options data tend to produce very poor information due to data limitations and large noise 

in continuous time options prices (see Breeden and Litzenberger (1978)). 

IV. Conclusion 

A parimutuel market microstructure for contingent claims recently used by 

Goldman Sachs and Deutsche Bank to offer derivatives on Eurozone Harmonized 

inflation and other economic indices has been discussed and analyzed in this paper.  A 
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parimutuel microstructure is a call auction market with special equilibrium pricing 

conditions on the relative prices of contingent claims.  We have shown that the 

parimutuel contingent claims mechanism recently employed in the capital markets is 

quite general, and has its roots in the market games literature.  

We have shown how the market microstructure incorporating parimutuel 

principles for contingent claims which allows for notional transactions, limit orders, and 

bundling of claims across states is constructed.  We have proven the existence of a unique 

price equilibrium for such a market and suggest an algorithm for computing the 

equilibrium. 

We believe that, for a broad class of contingent claims, the parimutuel 

microstructure recently deployed offers many advantages over the dominant dealer and 

exchange continuous-time mechanisms.  First, the parimutuel mechanism does not 

require a discrete order match between two counterparties.  Instead, orders are executed 

multilaterally.  All executed orders premium is used to fund all of the contingent in-the-

money options, i.e., the payouts.  Second, we believe the transparent and straightforward 

pricing mechanism will be attractive to market participants.  We believe that the success 

of the parimutuel mechanism in the wagering markets can, with the modifications which 

we have made to the mechanism, be carried over into the capital markets.  Third, we 

believe that the risk neutral and self-hedging nature of the parimutuel mechanism, from 

the perspective of the broker/dealer or other entity which hosts the auction, offers a 

superior tradeoff between the risk of derivatives dealing and the compensation for 

providing liquidity for contingent claims.  We believe that the parimutuel microstructure 

may in fact avoid altogether some of risks inherent in derivatives market-making that 

periodically result in well-publicized disastrous outcomes.  Fourth, we have shown that 

the Parimutuel mechanism as implemented in this paper is more efficient than other 

trading mechanisms.  Finally, we believe that the parimutuel microstructure is ideally 

suited for completing some markets where there currently is an absence of liquidity, such 

as contingent claims on mortgage prepayment speeds, corporate earnings, weather, and 

economic statistics, such as the recent Eurozone inflation auction. 
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VI. Appendix 

 
Proof of Proposition 4: 
 

 We first show that the SSMG and a parimutuel market are payout-equivalent. We 

then show that the first order necessary conditions characterizing the Nash Equilibrium 

are identical in each market.  With respect to payout equivalence, the proof of Proposition 

2 shows that any strategy vector of premium bids and notional offers can be replicated 

using a bid strategy as follows.  Namely, any strategy consisting of the following vector 

pair 

),,,,,(

),,,,,(

121

121
j

S
j

S
jjj

j
S

j
S

jjj

bbbbb

xxxxx

−

−

=

=

K

K
    (A1) 

which results in final wealth for agent i equal to 
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can be replicated using a single vector strategy in bids as follows 

).,,,,(
1

11
2

22
1

11 ∑∑∑∑
≠−≠

−−
≠≠

++++=
S

S
j

s
j

S
Ss

S
j

s
j

S
s

j
s

j

s

j
s

jj pxbpxbpxbpxbb K (A3) 

Noting that 
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the final state-contingent wealth for agent i owing to the replicated strategy is equal to 
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This shows that the final wealth from the replication strategy employing no offers is 

identical to the final wealth to the strategy employing offers, i.e., the SSMG for 

contingent claims and the parimutuel market are payout-equivalent. 
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We now show the first order necessary conditions of the parimutuel market are 

equivalent to those of the SSMG, as reported extensively in the market game literature. 

Since the entire strategy space can be obtained using bids, the optimization problem faced 

by agent j may be written as 
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where  qs
j  denotes the subjective probability assessment of agent j for state s.  Following 

Levin (1994), we find it more convenient to make the following change of variables in 

the optimization problem: 
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Respectively, these new variables denote (1) the total bids for state s excepting agent j’s 

bid; (2) the total bids for state s including agent j’s bid; (3) the total bids for all states for 

all agents; and (4) the total bids for all the states excepting agent j’s bids. Straightforward 

substitution of the new variables into the optimization problem yields: 
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Straightforward differentiation of the associated Lagrangean yields the following first 

order necessary conditions for an interior optimum15
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With the following definitions of the state contingent claim prices excluding  the 

effect of agent i’s strategy 
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and with the definition of the state price including j’s strategy 
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the first order conditions become 
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which is identical to the optimality conditions derived by Peck, Shell, and Spear (1992, 

Proposition 2.4) for their implementation of the Shapley-Shubik commodities market 

game.  Thus, a parimutuel market is both payout- and first-order-condition-equivalent to 

an SSMG market for contingent claims.  This provides a connection between the 

extensive market game literature (Shapley and Shubik (1977), Peck, et al. (1992) and the 

smaller literature on parimutuel gambling (Levin (1994)). 

 

 

Proof of Proposition 516: 
 

We provide a proof for notional orders, i.e., those with order amounts in terms of 

notional that are independent of equilibrium prices.  From Eqn. 35 and the assumption 

that the probabilities of the defined states must sum to one (Eqn. 29, again ignoring any 

                                                 
15  By assuming an interior solution, we assume a positive bid for each state such that a “no-bid” 
strategy corresponds to a vanishingly small positive bid for a state. 
16  We would like to thank Ken Baron of Longitude who contributed to this proof. 
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interest rate considerations), the following S+1 equations may be solved to obtain the 

unique set of defined state prices (p’s) and the total executed premium  
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Eqn. A13 contains S+1 unknowns and S+1 equations.  The unknowns are the pj’s, s=1,2, 

…, S, and M, the total executed premium for all of the defined states.   

We first solve for  M.  Using Eqns. A13 and the fact that ps is greater than 0 and 

less than one, we conclude that  
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This equation implies that  
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Thus,  

)max( ssyM θ+>  for  s = 1, 2, …, S.    (A16)  

So a lower bound for M is equal to 
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where the maximum is taken over s = 1, 2, …, S.   

 Next, we derive an upper bound for M.  Using the definition for M (Eqn. 32) and 

mj (Eqn. 36),  
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Letting y(m) be the maximum value of the y’s,  
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Thus, the upper bound for M is equal to 
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The solution for the total premium in the defined outcomes therefore lies in the range M 

∈  (Mlower, Mupper] or   
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.    (A21)  )max()max(
1
∑
=
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S

s
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Let the function  f  be defined as  

1)(
1

−
−

=∑
=

S

s s

s

yM
Mf θ .    (A22)  

Note that  

 F(Mlower) > 0,       (A23) 

  f(Mupper) < 0.        

Now, over the range  M ∈  (Mlower, Mupper], we can check that  f(M)  is differentiable and 

strictly monotonically decreasing.  Thus, we conclude that there is a unique  M  in the 

range such that  

    f(M)  = 0.       (A24) 

     

Thus, M is uniquely determined from the y’s and therefore the demands for orders which 

proves the proposition. 

 Once M is known, we can compute the vector p from Eqn. A13, since the θs’s are 

known.  We now show how we can solve iteratively for M using the y’s.  Using Eqn. A22 

we can write that  

∑
= −

−==′
S

s s

s

yMdM
dfMf

1
2)(

)( θ .   (A25) 

Thus, for M take for an initial guess   

M0 = Mlower . 

For the κ+1st guess, use  

Mκ +1 = 
)(
)( - κ

κ
κ

Mf
MfM
′

.    (A26) 

The solution for  f(M) = 0  over the interval  (Mlower, Mupper]  can therefore be obtained 

using Newton’s iteration.  Once the solution is obtained, the value of M can be 

substituted into each of the S equations in Eqn. A13 to solve for the ps.   

 

Proof of Proposition 6: 
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We show that there exists a fixed point iteration sequence leading to a unique set of 

prices which solves the optimization problem.  To prove the existence and convergence 

to a unique price equilibrium, consider the following iterative mapping 
 

          )(*)( xgxxF β−= .      (A27) 

 

Eqn. A27 can be proved to be contraction mapping which for a step size β independent of 

x will globally converge to a unique equilibrium, i.e., it can be proven that Eqn. A27 has 

a unique fixed point of the form 
**)( xxF = .     (A28) 

To first show that F(x) is a contraction mapping, matrix differentiation of Eqn. A27 

yields: 
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   (A29) 

The matrix D(x) of Eqn. A33 is the matrix of order price first derivatives (i.e., the order 

price Jacobian). By well-known principles, Eqn. A29 can be shown to be a contraction if 

the following condition holds 

1)(
<

dx
xdF ,                (A30) 

which is the case if the following condition holds 

.       .,.)),(max()(

,1)(*

DofradiusspectraltheeiDD
where

D

sλρ

ρβ

=

<
    (A31) 

By the Gerschgorin’s Circle Theorem, the eigenvalues of C are bounded between 0 and 1.  

The matrix  Z-1  is a diagonally dominant matrix, all rows of which sum to 1/M. Because 
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of the diagonal dominance, the other eigenvalues of Z-1 are clustered around the diagonal 

elements of the matrix, and are approximately equal to ps/θs. The largest eigenvalue of Z-

1 is therefore bounded above by 1/θs. The spectral radius of D is therefore bounded 

between 0 and linear combinations of θs as follows: 

.
1

1,)(

1
∑
=

=≤ S

s sk

LLDρ      (A32) 

where the quantity L, a function of the opening order amounts, can be interpreted as the 

“liquidity capacitance” of the equilibrium (mathematically L is quite similar to the total 

capacitance of capacitors in series). The function F(x) of Equation is therefore a 

contraction if 

.L<β       (A33) 

Eqn. A33 states that a contraction to the unique price equilibrium can be guaranteed for 

contraction step sizes no larger than L, which is an increasing function of the opening 

orders in the auction. 

The fixed point iteration of Eqn. A37 converges to  x*.  Since  y* = A
T
x*, y*  can 

be used in Eqn. A13 to compute the fundamental state prices  p*  and the total quantity of 

premium invested  M*. If there are linear dependencies in the A matrix, it may be 

possible to preserve  p*  through a different allocation of the x’s corresponding to the 

linearly dependent rows of A.  For example, consider two orders, x1 and x2, which span 

the same states and have the same limit order price.  Assume that  r1 = 100 and  r2 = 100 

and that  x1* = x2* =50 from the fixed point iteration.  Then clearly, it would be possible 

to set  x1 = 100  and  x2 = 0  without disturbing  p*. For example, different order priority 

rules may give execution precedence to the earlier submitted identical order. In any 

event, the fixed point iteration results in a unique price equilibrium, that is, unique in p.  

In our current model of the parimutuel limit order book, the priority rule is the 

optimization of the total notional orders subject to the optimal prices.  At the optimal 

prices, the nonlinear program in Eqn. 45, becomes the following linear program: 
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**
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     (A34) 

where  p*  solves the fixed point iteration. 

 
Proof of Proposition 7:17

 
Assume a market for m single state claims.  We model the market price of these claims as 

sss fp ~~ += µ       (A35) 

),0(~~ 2
ssf σ  

for  s= 1, 2, …, S.  In the parimutuel microstructure, the sum of the forward state prices 

are enforced to be one, or  
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Next, let  
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Substituting and rearranging terms yields: 
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17  We would like to thank Ken Baron of Longitude for helpful discussions regarding this proof. 
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Now, we make a simplifying assumption of unit variances.  This will not affect our 

analysis as we are interested in relative average noise between a parimutuel and trading-

post microstructure.  Thus, the last equation simplifies to 

1
1
−

−=
S

cov .      (A41) 

We now analyze, using a simple table, the total variance of a contingent claim 

consisting of 1,2, …, S states in the parimutuel microstructure which imposes a 

covariance structure, and a non-parimutuel microstructure in which covariances are zero. 
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We now calculate the total variance (TV) of orders in a parimutuel (PM) 

microstructure and trading post microstructure (non-parimutuel) as follows: 
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since .  Hence the ratio of trading post average order noise to parimutuel 

order noise is 
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So the average order noise for a parimutuel system is half that for the non-parimutuel 

system.   
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 Assume that average noise volatility is 10% of the price.  If therefore there is 100 

million USD in premium, 10 million USD is one standard deviation of noise around the 

true price.  By the previous result, a parimutuel microstructure would have 7.07 million 

in noise (10 million divided by square root of 2).  Therefore, if the average bid-offer 

spread in a non-parimutuel microstructure is proportional to the noise volatility of prices, 

the net efficiency of the parimutuel system can be written as: 

     MM σασαδ )29.0()
2

12( =
−

=    (A46) 

 

where 

δ= savings due to parimutuel microstructure 

M = total premium in system 
σ = average volatility of price error around the true price (“noise volatility”) 
α = bid/offer spread assumed proportional to average noise volatility 
 

which is Proposition 7. 
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