Mathematical Preliminaries

Yinyu Ye
Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Chapters 1 and Appendixes A,B.1-B.2,C.1
Real n-Space; Euclidean Space

- \mathcal{R}, \mathcal{R}_+, int \mathcal{R}_+
- \mathbb{R}^n, \mathbb{R}_+^n, int \mathbb{R}_+^n
- $x \geq y$ means $x_j \geq y_j$ for $j = 1, 2, \ldots, n$
- $\mathbf{0}$: all zero vector; and \mathbf{e}: all one vector
- Inner-Product:
 \[x \cdot y := x^T y = \sum_{j=1}^{n} x_j y_j \]
- Norm: $\|x\|_2 = \sqrt{x^T x}$, $\|x\|_\infty = \max\{|x_1|, |x_2|, \ldots, |x_n|\}$, $\|x\|_p = \left(\sum_{j=1}^{n} |x_j|^p\right)^{1/p}$
- The dual of the p norm, denoted by $\|\cdot\|^*$, is the q norm, where $\frac{1}{p} + \frac{1}{q} = 1$
- Column vector:
 \[x = (x_1; x_2; \ldots; x_n) \]
and row vector:

\[\mathbf{x} = (x_1, x_2, \ldots, x_n) \]

- A set of vectors \(\mathbf{a}_1, \ldots, \mathbf{a}_m \) is said to be **linearly dependent** if there are scalars \(\lambda_1, \ldots, \lambda_m \), not all zero, such that the linear combination

\[\sum_{i=1}^{m} \lambda_i \mathbf{a}_i = 0 \]

- A linearly independent set of vectors that span \(\mathbb{R}^n \) is a **basis**.

- For a sequence \(\mathbf{x}^k \in \mathbb{R}^n, k = 0, 1, \ldots \), we say it is a **contraction** sequence if there is an \(\mathbf{x}^* \in \mathbb{R}^n \) and a scalar constant \(0 < \gamma < 1 \) such that

\[\| \mathbf{x}^{k+1} - \mathbf{x}^* \| \leq \gamma \| \mathbf{x}^k - \mathbf{x}^* \|, \quad \forall k \geq 0. \]
Matrices

- $A \in \mathbb{R}^{m \times n}$; a_i, the ith row vector; $a_{j\cdot}$, the jth column vector; a_{ij}, the i,jth entry
- 0: all zero matrix, and I: the identity matrix
- The null space $\mathcal{N}(A)$, the row space $\mathcal{R}(A^T)$, and they are orthogonal.
- $\det(A)$, $\text{tr}(A)$: the sum of the diagonal entries of A
- Inner Product:
 \[A \bullet B = \text{tr}A^T B = \sum_{i,j} a_{ij} b_{ij} \]
- The operator norm of matrix A:
 \[\|A\|^2 := \max_{0 \neq x \in \mathbb{R}^n} \frac{\|Ax\|^2}{\|x\|^2} \]
- The Frobenius norm of matrix A:
 \[\|A\|_f^2 := A \bullet A = \sum_{i,j} a_{ij}^2 \]
Sometimes we use $X = \text{diag}(x)$

- **Eigenvalues and eigenvectors**

 $$Av = \lambda \cdot v$$

- **Perron-Frobenius Theorem**: a real square matrix with positive entries has a unique largest real eigenvalue and the corresponding eigenvector has strictly positive components.

- **Stochastic Matrices**: $A \geq 0$ with $e^T A = e^T$ (Column-Stochastic), or $Ae = e$ (Row-Stochastic), or Doubly-Stochastic if both. It has a unique largest real eigenvalue 1 and corresponding non-negative right or left eigenvector.
Symmetric Matrices

- S^n
- The Frobenius norm:
 \[\|X\|_f = \sqrt{\text{tr}X^TX} = \sqrt{X \cdot X} \]
- Positive Definite (PD): $Q \succ 0$ iff $x^TQx > 0$, for all $x \neq 0$. The sum of PD matrices is PD.
- Positive Semidefinite (PSD): $Q \succeq 0$ iff $x^TQx \geq 0$, for all x. The sum of PSD matrices is PSD.
- PSD matrices: S^n_+, $\text{int } S^n_+$ is the set of all positive definite matrices.
Known Inequalities

- Cauchy-Schwarz: given \(x, y \in \mathbb{R}^n \), \(x^T y \leq \|x\|\|y\| \).
- Triangle: given \(x, y \in \mathbb{R}^n \), \(\|x + y\| \leq \|x\| + \|y\| \).
- Arithmetic-geometric mean: given \(x \in \mathbb{R}^n_+ \),
 \[
 \frac{\sum x_j}{n} \geq \left(\prod x_j \right)^{1/n}.
 \]
When \(x \) and \(y \) are two distinct points in \(\mathbb{R}^n \) and \(\alpha \) runs over \(\mathbb{R} \),

\[
\{ z : z = \alpha x + (1 - \alpha)y \}
\]

is the line connecting \(x \) and \(y \). When \(0 \leq \alpha \leq 1 \), it is called the convex combination of \(x \) and \(y \) and it is the line segment between \(x \) and \(y \).

\[
\{ z : z = \alpha x + \beta y \},
\]

for multipliers \(\alpha, \beta \), is the linear combination of \(x \) and \(y \), and it is the hyperplane containing origin and \(x \) and \(y \). When \(\alpha \geq 0, \beta \geq 0 \), it is called the conic combination...
Convex Set

- Ω is said to be a **convex** set if for every $x^1, x^2 \in \Omega$ and every real number $\alpha \in [0, 1]$, the point $\alpha x^1 + (1 - \alpha) x^2 \in \Omega$.

- **Ball and Ellipsoid**: for given $y \in R^n$ and positive definite matrix Q:
 \[E(y, Q) = \{ x : (x - y)^T Q (x - y) \leq 1 \} \].

- The **intersection** of convex sets is convex, the **sum-set** of convex sets is convex, the **scaled-set** of a convex set is convex.

- The **convex hull** of a set Ω is the intersection of all convex sets containing Ω. Given column-points of A, the convex hull is $\{ z = Ax : e^T x = 1, x \geq 0 \}$.

 SVM Claim: two point sets are separable by a plane if any only if their convex hulls are separable.

- An **extreme** point in a convex set is a point that cannot be expressed as a convex combination of other two distinct points of the set.

- A set is **polyhedral** if it has finitely many extreme points; $\{ x : Ax = b, x \geq 0 \}$ and $\{ x : Ax \leq b \}$ are convex polyhedral.
Proof of convex set

• All solutions to the system of linear equations, \(\{x : Ax = b\} \), form a convex set.

• All solutions to the system of linear inequalities, \(\{x : Ax \leq b\} \), form a convex set.

• All solutions to the system of linear equations and inequalities, \(\{x : Ax = b, x \geq 0\} \), form a convex set.

• **Ball** is a convex set: given center \(y \in \mathbb{R}^n \) and radius \(r > 0 \), \(B(y, r) = \{x : \|x - y\| \leq r\} \).

• **Ellipsoid** is a convex set: given center \(y \in \mathbb{R}^n \) and positive definite matrix \(Q \),
 \(E(y, Q) = \{x : (x - y)^TQ(x - y) \leq 1\} \).
Consider the set B of all b, for a fixed A, such that the set, $\{x : Ax = b, \ x \geq 0\}$, is feasible.

Show that B is a convex set.

Example:

$$B = \{b : \{(x_1, x_2) : x_1 + x_2 = b, \ (x_1, x_2) \geq 0\} \text{ is feasible}\}.$$
A set C is a cone if $x \in C$ implies $\alpha x \in C$ for all $\alpha > 0$.

The intersection of cones is a cone.

A convex cone is a cone and also a convex set.

A pointed cone is a cone that does not contain a line.

Dual:

\[C^* := \{ y : x \cdot y \geq 0 \text{ for all } x \in C \}. \]

Theorem 1 The dual is always a closed convex cone, and the dual of the dual is the closure of convex hall of C.
Cone Examples

- **Example 2.1**: The n-dimensional non-negative orthant, $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x \geq 0\}$, is a convex cone. The dual cone is itself.

- **Example 2.2**: The set of all positive semi-definite matrices in \mathbb{S}^n, \mathbb{S}^n_+, is a convex cone, called the positive semi-definite matrix cone. The dual cone is itself.

- **Example 2.3**: The set $\{x \in \mathbb{R}^n : x_1 \geq \|x_{-1}\|\}$, \mathcal{N}^n_2, is a convex cone in \mathbb{R}^n called the second-order cone. The dual cone is itself.

- **Example 2.4**: The set $\{x \in \mathbb{R}^n : x_1 \geq \|x_{-1}\|_p\}$, \mathcal{N}^n_p, is a convex cone in \mathbb{R}^n called the p-order cone with $p \geq 1$. The dual cone is the q-order cone with $\frac{1}{q} + \frac{1}{p} = 1$.

Polyhedral Convex Cones

- A cone C is (convex) **polyhedral** if C can be represented by

 $\{ x : Ax \leq 0 \}$ or $\{ x : x = Ay, \ y \geq 0 \}$

 for some matrix A. In the latter case, K is generated by the columns of A.

- The nonnegative orthant is a polyhedral cone but the second-order cone is not polyhedral.
Figure 1: Polyhedral and non-polyhedral cones.
Real Functions

- **Continuous functions**

- **Weierstrass theorem**: a continuous function f defined on a compact set (bounded and closed) $\Omega \subset \mathbb{R}^n$ has a minimizer in Ω.

- The **gradient vector**: $\nabla f(x) = \{ \partial f / \partial x_i \}$, for $i = 1, \ldots, n$.

- The **Hessian matrix**: $\nabla^2 f(x) = \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j} \right\}$ for $i = 1, \ldots, n; \ j = 1, \ldots, n$.

- **Vector function**: $\mathbf{f} = (f_1; f_2; \ldots; f_m)$

- The **Jacobian matrix** of \mathbf{f} is

\[
\nabla \mathbf{f}(x) = \begin{pmatrix}
\nabla f_1(x) \\
\vdots \\
\nabla f_m(x)
\end{pmatrix}.
\]
• The least upper bound or supremum of f over Ω

$$\sup\{f(x) : x \in \Omega\}$$

and the greatest lower bound or infimum of f over Ω

$$\inf\{f(x) : x \in \Omega\}$$
Convex Functions

- \(f \) is a (strongly) convex function iff for \(0 < \alpha < 1 \),

\[
f(\alpha x + (1 - \alpha)y) \leq \alpha f(x) + (1 - \alpha)f(y).
\]

- The sum of convex functions is a convex function; the max of convex functions is a convex function;

- The Composed function \(f(\phi(x)) \) is convex if \(\phi(x) \) is a convex and \(f(\cdot) \) is convex&non-decreasing.

- The (lower) level set of \(f \) is convex:

\[
L(z) = \{x : f(x) \leq z\}.
\]

- Convex set \(\{(z; x) : f(x) \leq z\} \) is called the epigraph of \(f \).

- \(tf(x/t) \) is a convex function of \((t; x) \) for \(t > 0 \) if \(f(\cdot) \) is a convex function; it’s homogeneous with degree 1.
Convex Function Examples

- $\|x\|_p$ for $p \geq 1$.

 \[\|\alpha x + (1 - \alpha)y\|_p \leq \|\alpha x\|_p + \|(1 - \alpha)y\|_p \leq \alpha\|x\|_p + (1 - \alpha)\|y\|_p, \]

 from the triangle inequality.

- Logistic function $\log(1 + e^{a^T x + b})$ is convex.

- $e^{x_1} + e^{x_2} + e^{x_3}$.

- $\log(e^{x_1} + e^{x_2} + e^{x_3})$: we will prove it later.

Theorem 2 Every local minimizer is a global minimizer in minimizing a convex objective function over a convex feasible set. If the objective is strongly convex in the feasible set, the minimizer is unique.

Theorem 3 Every local minimizer is a boundary solution in minimizing a concave objective function (with non-zero gradient everywhere) over a convex feasible set. If the objective is strongly concave in the feasible set, every local minimizer must be an extreme solution.
Proof of convex function

Consider the minimal-objective value function of b for fixed A and c:

$$z(b) := \text{minimize} \quad c^T x$$
subject to \quad $A x = b,$
\quad $x \geq 0.$

Show that $z(b)$ is a convex function in b for all feasible b.

Taylor’s theorem or the mean-value theorem:

Theorem 4 Let $f \in C^1$ be in a region containing the line segment $[x, y]$. Then there is an α, $0 \leq \alpha \leq 1$, such that

$$f(y) = f(x) + \nabla f(\alpha x + (1 - \alpha)y)(y - x).$$

Furthermore, if $f \in C^2$ then there is an α, $0 \leq \alpha \leq 1$, such that

$$f(y) = f(x) + \nabla f(x)(y - x) + (1/2)(y - x)^T \nabla^2 f(\alpha x + (1 - \alpha)y)(y - x).$$

Theorem 5 Let $f \in C^1$. Then f is convex over a convex set Ω if and only if

$$f(y) \geq f(x) + \nabla f(x)(y - x)$$

for all $x, y \in \Omega$.

Theorem 6 Let $f \in C^2$. Then f is convex over a convex set Ω if and only if the Hessian matrix of f is positive semi-definite throughout Ω.
System of Linear Equations

Solve for \(x \in \mathbb{R}^n \) from:

\[
\begin{align*}
a_1x &= b_1 \\
a_2x &= b_2 \\
\vdots &= \vdots \\
a_mx &= b_m
\end{align*}
\Rightarrow Ax = b
\]
Figure 2: System of linear equations

\[3x + 2y = 12\]
\[2x + 3y = 12\]

(2.4, 2.4)
(4, 0) (6, 0)
(0, 4)
(0, 6)
Theorem 7 Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, the system $\{x : Ax = b\}$ has a solution if and only if $A^T y = 0$ and $b^T y \neq 0$ has no solution.

A vector y, with $A^T y = 0$ and $b^T y \neq 0$, is called an infeasibility certificate for the system.

Example Let $A = (1; -1)$ and $b = (1; 1)$. Then, $y = (1/2; 1/2)$ is an infeasibility certificate.

Alternative systems: $\{x : Ax = b\}$ and $\{y : A^T y = 0, b^T y \neq 0\}$.
Figure 3: \(\mathbf{b} \) is not in the set \(\{ A\mathbf{x} : \mathbf{x} \} \), and \(\mathbf{y} \) is the distance vector from \(\mathbf{b} \) to the set.
Linear least-squares problem

Given \(A \in \mathbb{R}^{m \times n} \) and \(c \in \mathbb{R}^n \),

\[
(\text{LS}) \quad \text{minimize} \quad \| c - A^T y \|^2 \\
\text{subject to} \quad y \in \mathbb{R}^m.
\]

A close form solution:

\[
AA^T y = Ac \quad \text{or} \quad y = (AA^T)^{-1} Ac.
\]

\[
\begin{align*}
\text{c} - A^T y &= \text{c} - A^T (AA^T)^{-1} Ac \\
&= \text{c} - P\text{c}
\end{align*}
\]

Projection matrix: \(P = A^T (AA^T)^{-1} A \) or \(P = I - A^T (AA^T)^{-1} A \).
Figure 4: Projection of \mathbf{c} onto a subspace
Choleski decomposition method

\[AA^T = L \Lambda L^T \]

\[L \Lambda L^T y^* = Ac \]
System of nonlinear equations

Given $f(x) : \mathbb{R}^n \rightarrow \mathbb{R}^n$, the problem is to solve n equations for n unknowns:

$$f(x) = 0.$$

Given a point x^k, Newton’s Method sets

$$f(x) \approx f(x^k) + \nabla f(x^k)(x - x^k) = 0.$$

$$x^{k+1} = x^k - (\nabla f(x^k))^{-1}f(x^k)$$

or solve for direction vector d_x:

$$\nabla f(x^k)d_x = -f(x^k) \quad \text{and} \quad x^{k+1} = x^k + d_x.$$
Figure 5: Newton’s method for root finding
The quasi Newton method

For minimization of objective function $f(x)$, then $f(x) = \nabla f(x)$

$$x^{k+1} = x^k - \alpha (\nabla^2 f(x^k))^{-1} \nabla f(x^k)$$

where scalar $\alpha \geq 0$ is called step-size. More generally

$$x^{k+1} = x^k - \alpha M^k \nabla f(x^k)$$

where M^k is an $n \times n$ symmetric matrix. In particular, if $M^k = I$, the method is called the gradient method, where f is viewed as the gradient vector of a real function.
• \(\{x^k\}_{0}^{\infty} \) denotes a sequence \(x^0, x^1, x^2, \ldots, x^k, \ldots \).

• \(x^k \to \bar{x} \) iff

\[
\|x^k - \bar{x}\| \to 0
\]

• \(g(x) \geq 0 \) is a real valued function of a real nonnegative variable, the notation \(g(x) = O(x) \) means that \(g(x) \leq \bar{c}x \) for some constant \(\bar{c} \);

• \(g(x) = \Omega(x) \) means that \(g(x) \geq c x \) for some constant \(c \);

• \(g(x) = \theta(x) \) means that \(cx \leq g(x) \leq \bar{c}x \).

• \(g(x) = o(x) \) means that \(g(x) \) goes to zero faster than \(x \) does:

\[
\lim_{x \to 0} \frac{g(x)}{x} = 0
\]