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The Lagrangian Function and Method

We consider

f∗ := min f(x) s.t. h(x) = 0, x ∈ X. (1)

Recall that the Lagrangian function:

L(x,y) = f(x)− yTh(x).

and the dual function:

ϕ(y) = min
x∈X

L(x,y); (2)

and the dual problem

(f∗ ≥)ϕ∗ := max ϕ(y). (3)

In many cases, one can find y∗ of dual problem (3), a unconstrained optimization problem; then go ahead

to find x∗ using (2).
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The Local Duality Theorem

Suppose x∗ is a local minimizer, and consider the localized (convex) problem

f(x∗) := min f(x) s.t. h(x) = 0, x ∈ X, ∥x− x∗∥2 ≤ ϵ. (4)

Then, the localized Lagrangian function:

Lx∗(x,y, µ(≤ 0)) = f(x)− yTh(x)− µ(∥x− x∗∥2 − ϵ).

and the localized dual function:

ϕx∗(y, µ) = min
x∈X, ∥x−x∗∥2≤ϵ

Lx∗(x,y, µ); (5)

and the localized dual problem

max ϕ(y, µ ≤ 0). (6)

Under certain constraint qualification and local convexity conditions, we must have

f(x∗) = ϕ(y∗, µ∗ = 0) where the localization constraint becomes inactive.
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The gradient and Hessian of ϕ

Let x(y) be a minimizer of (2). Then

ϕ(y) = f(x(y))− yTh(x(y))

Thus,

∇ϕ(y) = ∇f(x(y))T∇x(y)− yT∇h(x(y))∇x(y)− h(x(y))

= (∇f(x(y))T − yT∇h(x(y)))∇x(y)− h(x(y))

= −h(x(y)).
Similarly, we can derive

∇2ϕ(y) = −∇h(x(y))
(
∇2

xL(x(y),y)
)−1∇h(x(y))T ,

where∇2
xL(x(y),y) is the Hessian of the Lagrangian function that is assumed to be positive definite at

any (local) minimizer.
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The Toy Example

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + 2x2 − 1 = 0, 2x1 + x2 − 1 = 0.

L(x,y) = (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1).

x1 = 0.5y1 + y2 + 1, x2 = y1 + 0.5y2 + 1.

ϕ(y) = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2.

∇ϕ(y) =

 2.5y1 + 2y2 + 2

2y1 + 2.5y21 + 2

 ,

∇2ϕ(y) = −

 1 2

2 1

 2 0

0 2

−1  1 2

2 1

T

= −

 2.5 2

2 2.5


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The Fisher Example

minimize −5 log(2x1 + x2)− 8 log(3x3 + x4)

subject to x1 + x3 = 1, x2 + x4 = 1, x ≥ 0.

L(x(≥ 0),y) = −5 log(2x1 + x2)− 8 log(3x3 + x4)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1).

Start from y0 > 0, at the kth step, compute xk+1 from

xk+1 = argmin
x≥0

L(x(≥ 0),yk),

then let

yk+1 = yk − 1

β
(Axk+1 − b).
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The Augmented Lagrangian Function

In both theory and practice, we actually consider an augmented Lagrangian function (ALF)

La(x,y) = f(x)− yTh(x) +
β

2
∥h(x)∥2,

which corresponds to an equivalent problem of (1):

f∗ := min f(x) + β
2 ∥h(x)∥

2 s.t. h(x) = 0, x ∈ X.

Note that, although at feasibility the additional square term in objective is redundant, it helps to improve

strict convexity of the Lagrangian function.

For the Fisher example:

La(x(≥ 0),y)

= −5 log(2x1 + x2)− 8 log(3x3 + x4)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1)

+β
2 ((x1 + x3 − 1)2 + (x2 + x4 − 1)2).
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The Augmented Lagrangian Dual

Now the dual function:

ϕa(y) = min
x∈X

La(x,y); (7)

and the dual problem

(f∗ ≥)ϕ∗
a := max ϕa(y). (8)

Note that the dual function approximately satisfies 1
β -Lipschitz condition (see Chapter 14 of L&Y).

For the convex optimization case, say h(x) = Ax− b, we have

∇2La(x,y) = ∇2f(x) + β(ATA).
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The Augmented Lagrangian Method

The augmented Lagrangian method (ALM) is:

Start from any (x0 ∈ X,y0), we compute a new iterate pair

xk+1 = arg min
x∈X

La(x,y
k), and yk+1 = yk − βh(xk+1).

The calculation of x is used to compute the gradient vector of ϕa(y), which is a steepest ascent direction.

The method converges just like the SDM, because the dual function satisfies 1
β -Lipschitz condition.

Other SDM strategies may be adapted to update y (the BB, ASDM, Conjugate, Quasi-Newton ...).
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Analysis of the Augmented Lagrangian Method

Consider the convex optimization case h(x) = Ax− b. Since xk+1 makes KKT condition:

0 = ∇f(xk+1)−ATyk + βAT (Axk+1 − b)

= ∇f(xk+1)−AT (yk − β(Axk+1 − b))

= ∇f(xk+1)−ATyk+1,

we only need to be concerned about whether or not ∥Axk − b∥ converges to zero and how fast it

converges. First, from the convexity of f(x), we have

0 ≤ (∇f(xk+1)−∇f(xk))T (xk+1 − xk)

= (−ATyk+1 +ATyk)T (xk+1 − xk)

= (yk+1 − yk)T (Axk+1 −Axk)

= −β(Axk+1 − b)(Axk+1 − b− (Axk − b)),

which implies that ∥Axk+1 − b∥ ≤ ∥Axk − b∥, that is, the error is non-increasing.
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Again, from the convexity, we have

0 ≤ (∇f(xk+1)−∇f(x∗))T (xk+1 − x∗)

= (ATyk+1 −ATy∗)T (xk+1 − x∗)

= (yk+1 − y∗)T (Axk+1 −Ax∗) = (yk+1 − y∗)T (Axk+1 − b)

= 1
β (y

k+1 − y∗)T (yk − yk+1).

Thus, from the positivity of the cross product, we have

∥yk − y∗∥2 = ∥yk − yk+1 + yk+1 − y∗∥2

≥ ∥yk − yk+1∥2 + ∥yk+1 − y∗∥2

= β∥Axk+1 − b∥2 + ∥yk+1 − y∗∥2.

Sum up from 0 to k of the inequality we have

∥y0 − y∗∥2 ≥ ∥yk+1 − y∗∥2 + β
∑k

l=0 ∥Axl+1 − b∥2

≥ β
∑k

l=0 ∥Axl+1 − b∥2

≥ (k + 1)β∥Axk+1 − b∥2.
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Two-Block Alternating Direction Method with Multipliers

For the ADMM method, we consider structured problem

min f1(x1) + f2(x2) s.t. A1x1 +A2x2 = b, x1 ∈ X1, x2 ∈ X2.

Consider

L(x1,x2,y) = f1(x1) + f2(x2)− yT (A1x1 +A2x2 − b) +
β

2
∥A1x1 +A2x2 − b∥2.

Then, for any given (xk
1 ,x

k
2 ,y

k), we compute a new iterate

xk+1
1 = argminx1∈X1 L(x1,x

k
2 ,y

k),

xk+1
2 = argminx2∈X2 L(x

k+1
1 ,x2,y

k),

yk+1 = yk − β(A1x
k+1
1 +A2x

k+1
2 − b).

Again, we can prove that the iterates converge with the same speed.

The ADMM method resembles the Block Coordinate Descent (BCD) Method ...
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Direct Application of ADMM to Linear Programming I

Consider the standard-form LP

minimizex cTx

s.t. Ax = b,

x ≥ 0.

⇒
minimize(x1,x2) cTx1

s.t. Ax1 = b,

x1 − x2 = 0, x2 ≥ 0.

L(x1,x2,y) = cTx1 − yT (Ax1 − b)− sT (x1 − x2) +
β

2

(
∥Ax1 − b∥2 + ∥x1 − x2∥2

)
.

where y and s are the multiplier vectors of first and second equality constraints in the reformulation.

The advantage of such splitting reformulation is that the update of either x1 or x2 has a simple close form

solution.
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Direct Application of ADMM to Dual Linear Programming I

Consider the dual LP

maximize(y,s) bTy

s.t. ATy + s = c, s ≥ 0.

The augmented Lagrangian function would be

L(y, s,x) = −bTy − xT (ATy + s− c) +
β

2
∥ATy + s− c∥2,

where β is a positive parameter, and x is the multiplier vector.
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Direct Application of ADMM to Dual Linear Programming II

The ADMM for the dual is straightforward: starting from any y0, s0 ≥ 0, and multiplier x0,

• Update variable y:

yk+1 = argmin
y

L(y, sk,xk);

• Update slack variable s:

sk+1 = argmin
s≥0

L(yk+1, s,xk);

• Update multipliers x:

xk+1 = xk − β(ATyk+1 + sk+1 − c).

Note that the updates of y is a least-squares problem with constant matrix, and the update of s has a

simple close form. (Also note that x would be non-positive at the end, since we changed maximization to

minimization of the dual.)

To split y into multi blocks and update cyclically in random order?

Matlab demo
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ADMM for Solving the Fisher Example

minimize −5 log(2x1 + x2)− 8 log(3x3 + x3)

subject to x1 + x3 = 1, x2 + x4 = 1, x ≥ 0.

minimize −5 log(u1)− 8 log(u2)

subject to x1 + x3 − 1 = 0, x2 + x4 − 1 = 0,

2x1 + x2 − u1 = 0, 3x3 + x4 − u2 = 0,

x− s = 0, s ≥ 0.

L(x,u, s(≥ 0),y) = −5 log(u1)− 8 log(u2)− y1(x1 + x3 − 1)− y2(x2 + x4 − 1)

−y3(2x1 + x2 − u1)− y4(3x3 + x4 − u2)− yT
5:8(x− s)+

β
2 [(x1 + x3 − 1)2 + (x2 + x4 − 1)2 + (2x1 + x2 − u1)

2 + (3x3 + x4 − u2)
2 + ∥x− s∥2].

Let the first block primal variables be x and the second be (u, s). Then start from y0 repeat the ADMM

steps. Note that all primal variables have close-form solutions.
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ADMM for SNL

Recall that SNL can be represented as a quartic polynomial minimization and it is a nonconvex problem.

Applying the variable-splitting, it becomes constrained bi-convex minimization problem

minxi,zi

∑
(i,j)∈Nx

((xi − xj)
T (zi − zj)− d2ij)

2 +
∑

(k,j)∈Na
((ak − xj)

T (ak − zj)− d̂2kj)
2

s.t. xi = zi, ∀i.

The augmented Lagrangian function would be

La(xi, zi,yi)

=
∑

(i,j)∈Nx
((xi − xj)

T (zi − zj)− d2ij)
2 +

∑
(k,j)∈Na

((ak − xj)
T (ak − zj)− d̂2kj)

2

−
∑

i y
T
i (xi − zi) +

β
2

∑
i ∥xi − zi∥2.

Then one can treat xi’s as the first block of variables and zi’s the second block, and apply ADMM.

Minimizer x’s of the Lagrangian function, when zi,yi’s are fixed, is the solution of a strongly convex

quadratic minimization.
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The ADMM with Three Blocks?

What about ADMM for

min f1(x1) + f2(x2) + f3(x3) s.t. A1x1 +A2x2 +A3x3 = b,

where the Lagrangian function

L(x1,x2,x3,y) = f1(x1) + f2(x2) + f3(x3)− yT (A1x1 +A2x2 +A3x3 − b)

+β
2 ∥A1x1 +A2x2 +A3x3 − b∥2.

Then, for any given (xk
1 ,x

k
2 ,x

k
3 ,y

k), we compute a new iterate

xk+1
1 = argminx1 L(x1,x

k
2 ,x

k
3 ,y

k),

xk+1
2 = argminx2 L(x

k+1
1 ,x2,x

k
3 ,y

k),

xk+1
3 = argminx3 L(x

k+1
1 ,xk+1

2 ,x3,y
k),

yk+1 = yk − β(A1x
k+1 +A2x

k+1
2 +A3x

k+1
3 − b).
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Does it Converge?

Not easy to analyze the convergence: the operator theory for the ADMM cannot be directly extended to the

ADMM with three blocks, since the proof for two blocks breaks down for three blocks.

Existing results for convergence:

• Strong convexity; plus carefully select β in a specific range.

• Other restricted conditions on the problem, and take a sufficiently smaller step-size factor 1 > γ > 0

in dual update

yk+1 = yk − γβ(A1x
k+1
1 +A2x

k+1
2 +A3x

k+1
3 − b).

• Various post correction steps, which are costly.

But, these did not answer the open question whether or not the direct extension of multi-block ADMM

converges under the original simple convexity assumption.
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The Direct Extension does Not Work

Theorem 1 There existing an example where the direct extension of ADMM of three blocks is not

necessarily convergent for any choice of β. Moreover, for any randomly generated initial point, ADMM

diverges with probability one.

The problem with unique solution x∗ = 0:

min 0 · x1 + 0 · x2 + 0 · x3 s.t.


1 1 1

1 1 2

1 2 2




x1

x2

x3

 = 0,

Does the smaller step-size (1 > γ > 0) dual update work? Answer: it remains divergent when solving

min 0 · x1 + 0 · x2 + 0 · x3 s.t.


1 1 1

1 1 1 + γ

1 1 + γ 1 + γ




x1

x2

x3

 = 0,
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The Algorithmic Mapping is Not Contracting

The ADMM with β = 1 is a linear matrix mapping

3 0 0 0 0 0

4 6 0 0 0 0

5 7 9 0 0 0

1 1 1 1 0 0

1 1 2 0 1 0

1 2 2 0 0 1



 xk+1

yk+1

 =



0 −4 −5 1 1 1

0 0 −7 1 1 2

0 0 0 1 2 2

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



 xk

yk

 .

which can be reduced to 
xk+1
2

xk+1
3

yk+1

 = M


xk
2

xk
3

yk

 ,

21



CME307/MS&E311: Optimization Lecture Note #11

where

M =
1

162



144 −9 −9 −9 18

8 157 −5 13 −8

64 122 122 −58 −64

56 −35 −35 91 −56

−88 −26 −26 −62 88


.

But the spectral radius of the matrix, ρ(M) = 1.0087 > 1, which implies that the mapping is not a contraction.
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Multi-Block Problems and ADMM

In general, consider a convex optimization problem

minx∈RN f1(x1) + . . .+ fn(xn),

s.t. Ax := A1x1 + · · ·+Anxn = b,

xi ∈ Xi ⊂ Rdi , i = 1, . . . , n.

(9)

L(x1, . . . ,xn;y) =
∑
i

fi(xi)− yT (
∑
i

Aixi − b) +
β

2
∥
∑
i

Aixi − b∥2

The direct Cyclic Extension Multi-block ADMM:

x1 ←− argminx1∈X1 L(x1, . . . ,xn;y),
...

xn ←− argminxn∈Xn L(x1, . . . ,xn;y),

y←− y − β(Ax− b),
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Randomly Permuted ADMM

Random-Permuted ADMM (RP-ADMM): in each round, draw a random permutation

σ = (σ(1), . . . , σ(n)) of {1, . . . , n}, and use the

Update Order : xσ(1) → xσ(2) → . . .→ xσ(n) → y.

• This is equivalent to a random sample without replacement so it costs nothing.

• Interpretation: Force “absolute fairness” among blocks.

• Simulation Test Result on solving linear equations: always converges!

Any theory behind the success?

We produced a positive result for ADMM on solving the system of linear equations.
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Random Permuted ADMM for Linear Systems

Consider solving a nonsingular square system of linear equations (fi = 0, ∀i).

minx∈RN 0,

s.t. A1x1 + · · ·+Anxn = b,

RP-ADMM generates zk, an r.v., depending on

ξk = (σ1, . . . , σk), zi = Mσiz
i−1, i = 1, ..., k,

where σi is the random permutation at i-th round.

Denote the expected iterate ϕk := Eξk
(zk)

Theorem 2 The expected output converges to the unique solution of the linear system equations any

integer N ≥ 1.

Remark: Expected convergence ̸= convergence, but is a strong evidence for convergence for solving

most problems, e.g., when iterates are bounded.
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The Average Mapping is a Contraction

• The update equation of RP-ADMM is

zk+1 = Mσz
k,

where Mσ ∈ R2N×2N depend on σ.

• Define the expected update matrix as

M = Eσ(Mσ) =
1

n!

∑
σ

Mσ.

Theorem 3 The spectral radius of M , ρ(M), is strictly less than 1 for any integer N ≥ 1.

Remark: For A in the divergence example, ρ(Mσ) > 1 for any σ

– Averaging Helps, a lot.
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RP-ADMM for Linear Constrained Convex QP

In general, consider a convex quadratic optimization problem

minx∈RN cT1 x1 + . . .+ cTnxn + 1
2x

TQx,

s.t. Ax := A1x1 + · · ·+Anxn = b.
(10)

Theorem 4 Under some technical assumptions, the expected output of randomly permuted ADMM

converges to the solution of the original problem for any integer N ≥ 1.
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Extensions and Research Directions (Suggested Project #5?)

• Non-square system of linear equations – “yes”

• Non-separable convex quadratic minimization with linear equality constraints – “yes”

• Convergence w.h.p.??

• Generalize to inequality systems or convex optimization at large??

• Generalize to non-convex optimization??

• ADMM where, in every iteration, each block are randomly assembled without replacement??
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Software Implementation Based on ADMM

SCS: http://www.stanford.edu/˜boyd/cvx for CLP

ABIP: https://github.com/sepvar/ABIP for solving LP

RACQP: https://github.com/kmihic/RACQP for quadratic minimization with mixed continuous

and integer decision variables.
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