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In this project, we study the computation the Wasserstein barycenter of a set of discrete probability

measures. Given support points of probability measures in a metric space and a transportation cost function

(e.g. the Euclidean distance), Wasserstein distance defines a distance between two measures as the minimal

transportation cost between them. Given a set of measures in the same space, the p-Wasserstein barycenter

is defined as the measure minimizing the sum of p-Wasserstein distances to all measures in the set. Note

that computing the barycenter of a set of discrete measures can be formulated by linear programming.

In this project, we focus on the case of p = 2 and compare the performance of different interior-point

methods in solving the barycenter problem. We refer the notations and model setup to [1]. Instead of

running experiments on MNIST dataset, we first restrict our attention to the algorithmic side and consider

the following way in specifying the distributions P(t).

• Generate mt samples from normal distribution N (µt, σ
2
t ) and construct P(t) as the empirical distribu-

tion on the mt samples.

• In the following experiments, you should vary the choice of the number of samples mt, the number of

distributions N, and the parameters (µt, σ
2
t ).

In this way, the objective becomes finding the Wasserstein barycenter of N normal distributions. Addi-

tionally, we first focus on the case of Pre-specified Support Problem (See [1]) and choose the support of the

barycenter distribution P be the union of the supports of P(t)’s.

Question 1: Implement central-path method for this problem. Alternatively, you may also implement

steepest descent method instead. Clearly state the linear program, include pseudo-code for your implemen-

tation, and report the parameters you use in the optimization algorithm such as step size.

Question 2: Implement the predictor-corrector interior point method [2] for this problem with the
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single low-rank regularization method (SLRM) and double low-rank regularization method (DLRM) in [1].

These two methods aim to reduce the cost of solving the Newton equations in interior point method. How

does this algorithm compare to the vanilla implementation of interior point method in Question 1? Plot the

barycenter distribution P for two to three problem instances (specifications of N , mt, etc.).

Now we consider the general Free Support Problem where the support of distribution P is also a decision

variable. In [3] and [4], the authors proposed an entropy-smoothed version of Wasserstein distance for both

regularization and computation purpose. The new distance replaces the summand ⟨D(t),Π(t)⟩ in (3) and (4)

in [1] with

⟨D(t),Π(t)⟩ − 1

λ
h(Π(t))

where h(·) is the entropy function. Intuitively, the entropy function will encourage the dispersion of the

distribution Π(t) and avoid concentrations on a few points. Computationally, this new formulation enables a

cheap computation of the gradients with respect to both the probability distribution parameters (a1, ..., am)

and the support X = (q1, ..., qm) (in the language of [1]).

Question 3: Implement Algorithm 3 in [4] with different choice of the regularization parameter γ. How

does the resultant barycenter distribution compare with the ones obtained from interior-point methods? Note

that Algorithm 3 in [4] considers a free-support setting while the two proceeding questions consider a pre-

specified support. For a fair comparison, you may implement the free-support version of the interior-point

method in [1]. Specifically, it will alternate between solving a linear program for the distribution parameter

(a1, ..., am) and solving a quadratic program for the support X = (q1, ..., qm). The quadratic program

features for an analytical solution as (7) in [1].

As noted in these papers, the free support problem is then a non-convex problem. Now we are interested

in how the gradient-based algorithm (Algorithm 3 in [4]) compares to the interior point method in respect

with escaping saddle points and local minima.

Question 4: Implement MAAIPM algorithm in [1] and compare it against Algorithm 3 in [4] in respect

with the original objective function value
N∑
t=1

⟨D(t),Π(t)⟩.

While implementing Algorithm 3 in [4], you may want to periodically increase the regularization parameter

γ to mitigate the effect of the additional penalty term. Please report the runtime, the number of iterations,

and the objective value under both algorithms.

Question 5: Now you may migrate the experiments to the MNIST dataset1 and Fashion MNIST

dataset2. The advantage of using these datasets is that it can provide a more meaningful visualization of

1http://yann.lecun.com/exdb/mnist/
2https://www.kaggle.com/zalando-research/fashionmnist
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the barycenter distribution.
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