
CME 307 / MS&E 311 Winter 2022

Optimization Feb 1, 2022

Prof. Yinyu Ye Not Graded

Homework Assignment 2
Discuss Session Friday Feb 4th in Problem Session

Individual Homework (110’):

1. (15’) Consider problem 5 of Homework Assignment 1 where the second-order cone is

replaced by the p-th order cone for p ≥ 1:

minx 2x1 + x2 + x3
s.t. x1 + x2 + x3 = 1,

x1 − ∥(x2, x3)∥p ≥ 0.

(a) (5’) Write out the conic dual problem.

(b) (5’) Compute the dual optimal solution (y∗, s∗).

(c) (5’) Using the zero duality condition to compute the primal optimal solution x∗.

2. (20’) Consider the distributionally robust optimization (DRO) problem

minimizex∈X [maxd∈D
∑N

k=1(p̂k + dk)h(x, ξk)
]

(1)

where the distribution set D is now given by

D = {d :
N∑
k=1

dk = 0, ∥d∥2 ≤ 1/N, p̂k + dk ≥ 0, ∀k.}

(a) (3’) What is the interpretation of D? Answer within 2 sentences.

(b) (4’) Represent D in standard conic form. (Hint: one set of the slack variables are

in the second-order cone and the others are in the non-negative orthant cone.)

(c) (7’) Construct the conic dual of the inner max-problem.

(d) (6’) Replace the inner max-problem (1) by its dual, and simplify the DRO problem

as much as possible.

3. (10’) Consider the SOCP relaxation in problem 8 of Homework Assignment 1:

minx 0Tx

s.t. ∥x− ai∥2 ≤ d2i , i = 1, 2, 3,

where x ∈ R2.



(a) (4’) Write down the first-order KKT optimality conditions.

(b) (3’) Interpret (with no more than 2 sentences) the three optimal multipliers when

the true position of the sensor is inside the convex hull of the three anchors.

(c) (3’) Could the true position x̄ ∈ R2 of the sensor satisfy the optimality conditions

if it is outside the convex hull of the three anchors? What would be the multiplier

values?

4. (10’) Consider the following parametric QCQP problem for a parameter κ > 0:

min (x1 − 1)2 + x22

s.t. −x1 + x2
2

κ
≥ 0

(a) (5’) Is x = 0 a first-order KKT solution?

(b) (5’) Is x = 0 a second-order KKT necessary or sufficient solution for some value

of κ?

5. (20’) (Central-Path and Potential) Given standard LP problem

minimizex∈Rn cTx

subject to Ax = b, x ≥ 0.
(LP)

The Analytic Center of the primal feasible region Fp := {x : Ax = b,x ≥ 0} is

defined as the solution of the following linear-constrained convex optimization problem:

minimizex∈Rn −
n∑

j=1

log xj,

subject to Ax = b, x > 0.

(PB)

The Central Path x(µ) of (LP) is defined as the solution of the following Barrier LP

problem (where µ > 0 is a parameter):

minimizex∈Rn cTx− µ ·
n∑

j=1

log xj,

subject to Ax = b, x > 0.

(BLP)

Part I Now consider the following example:

minimizex∈R3 x1 + x2,

subject to x1 + x2 + x3 = 1,

(x1, x2, x3) ≥ 0.

(2)

(a) (4’) What is the analytic center of the primal feasible region in (2)?

(b) (4’) Find the central path x(µ) = (x1(µ), x2(µ), x3(µ)) for (2).

(c) (4’) Show that as µ decreases to 0, x(µ) converges to the unique optimal solution

of (2).



Part II Consider another example with different objective but the same feasible

region:
minimizex∈R3 x1

subject to x1 + x2 + x3 = 1

(x1, x2, x3) ≥ 0

(3)

(d) (4’) Find the central path x(µ) = (x1(µ), x2(µ), x3(µ)) for (3).

(e) (4’) Which point does the central path converge to now (as µ→ 0+)?

6. (15’) Consider the following SVM problem, where µ ≥ 0 is a prescribed constant:

min β + µ∥x∥2
s.t. aTi x+ x0 + β ≥ 1, ∀i,

bTj x+ x0 − β ≤ −1, ∀j,
β ≥ 0.

(a) (8’) Write out the Lagrangian dual problem of the SVM problem. Write it as

explicit as possible (at least remove the inner minimization). (Hint: You may

want to consider two separate cases: µ = 0 and µ > 0)

(b) (7’) Suppose that we have 6 training data in R2: a1 = (0; 0), a2 = (1; 0), a3 =

(0; 1) and b1 = (0; 0), b2 = (−1; 0), b3 = (0;−1). Use the optimality conditions

(or any approach you want) to find optimal solutions for µ = 0 and µ = 10−5,

respectively. Are the two optimal solutions unique for the given µ? Prove your

claim.

7. (20’) Consider a generalized Arrow–Debreu equilibrium problem in which the mar-

ket has n agents and m goods. Agent i, i = 1, ..., n, has a bundle amount of wi =

(wi1, wi2, . . . , wim) ∈ Rm
+ goods initially and has a linear utility function whose coeffi-

cients are ui = (ui1, ui2, . . . , uim) > 0 ∈ Rm. The goal is to price each good so that

the market clears. Note that, given the price vector p = (p1, p2, . . . , pm) > 0, agent i’s

utility maximization problem is:

maximize uT
i xi

subject to pTxi ≤ pTwi

xi ≥ 0

(a) (5’) For a given p ∈ Rm, write down the optimality conditions for agent i’s utility

maximization problem. Without loss of generality, you may fix pm = 1 since the

budget constraints are homogeneous in p.



(b) (5’) Suppose that p ∈ Rm and xi ∈ Rm satisfy the constraints:

n∑
i=1

xi =
n∑

i=1

wi,

uT
i xi

pTwi

pj ≥ uij, ∀i, j,

p ≥ 0,

xi ≥ 0, ∀i.

Show that p is then an equilibrium price vector.

(c) (5’) For simplicity, assume that all uij are positive so that all pj are positive.

By introducing new variables yj = log(pj) for j = 1, ...,m, the conditions can be

written as follows:

min 0

s.t.
∑n

i=1 xi =
∑n

i=1wi

log(uT
i xi)− log (

∑m
k=1wike

yk) + yj ≥ log(uij) ∀i, j

xij ≥ 0, ∀i, j

Show that this problem is convex in xij and yj. (Hint: Use the fact that log (
∑m

k=1wike
yk)

is a convex function in the yk’s.)

(d) (5’) Consider the Fisher example on Lecture Note with two agents and two goods,

where the utility coefficients are given by

u1 = (2; 1) and u2 = (3; 1),

while now there are no fixed budgets. Rather, let

w1 = (1; 0) and w2 = (0; 1)

that is, agent 1 brings in one unit good x and agent brings in one unit of good y.

Find the Arrow–Debreu equilibrium prices, where you may assume py = 1.

8. (Optional:) Consider the dual problem of an SDP,

max
y,S

by

subject to Ay + S = C

S ⪰ 0,

where A,C ∈ S3 is given. If A is not zero and the above problem is solvable, show that

it has a solution (y, S) satisfies rank(S) ≤ 2. (Hint: apply Caratheodory’s theorem)



Groupwork (30’) (group of 1-4 people):

9. (5’) Let {(ai, ci)}mi=1 be a given dataset where ai ∈ Rn, ci ∈ {±1}. In Logistic Regres-

sion (LR), we determine x0 ∈ R and x ∈ Rn by maximizing( ∏
i,ci=1

1

1 + exp(−aT
i x− x0)

)( ∏
i,ci=−1

1

1 + exp(aT
i x+ x0)

)
.

which is equivalent to maximizing the log-likelihood probability

−
∑
i,ci=1

log
(
1 + exp(−aT

i x− x0)
)
−
∑

i,ci=−1

log
(
1 + exp(aT

i x+ x0)
)
.

In this problem, we consider the quadratic regularized log-logistic-loss function

f(x, x0) =
∑
i,ci=1

log
(
1 + exp(−aT

i x− x0)
)
+
∑

i,ci=−1

log
(
1 + exp(aT

i x+ x0)
)
+0.001·∥x∥22.

Consider the following data set

a1 = (0; 0), a2 = (1; 0), a3 = (0; 1), a4 = (0; 0), a5 = (−1; 0), a6 = (0;−1),

with label

c1 = c2 = c3 = 1, c4 = c5 = c6 = −1

use the KKT conditions to find a solution of min f(x, x0). You can either solve it

numerically (e.g., using Matlab fsolve) or analytically (represent the solution by a

solution of a simpler (1D) nonlinear equation).

11. (15’) Consider standard LP problem

minimizex∈Rn cTx,

subject to Ax = b, x ≥ 0.
(LP)

with its dual
maximizey∈Rm,s∈Rn bTy,

subject to ATy + s = c, s ≥ 0.
(LD)

For any x ∈ int Fp := {x ∈ Rn : Ax = b,x > 0} and s ∈ int Fd := {s ∈ Rn : s =

c− ATy, s > 0,y ∈ Rm}, the Primal-Dual Potential Function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑

j=1

log(xjsj)

where ρ > 0 is a parameter.



Task: for two LP examples in Problem 5, namely (2) and (3), draw x part of the

primal-dual potential function level sets

ψ6(x, s) ≤ 0 and ψ6(x, s) ≤ −10,

and

ψ12(x, s) ≤ 0 and ψ12(x, s) ≤ −10;

respectively in int Fp (on a plane).

Hint: To plot the x part of the level set of the potential function, say ψ6(x, s) ≤ 0,

you plot

{x ∈ int Fp : min
s∈int Fd

ψ6(x, s) ≤ 0}.

This can be approximately done by sampling as follows. You randomly generate N

primal points {xp}Np=1 from int Fp, and N primal points of {sq}Nq=1 from int Fd. For

each primal point xp, you find if it is true that

min
q=1,...,N

ψ6(x
p, sq) ≤ 0.

Then, you plot those xp who give an ”yes” answer.

10. (10’) Recall the Fisher’s Equilibrium prices problem (discussed in Lecture Note 6),

which we describe here again for reference. Let B be the set of buyers and G be the

set of goods. Each buyer i ∈ B has a budget wi > 0, and utility coefficients uij ≥ 0

for each good j ∈ G. Under price p, buyer i ∈ B’s optimal purchase quantity x∗
i (p) is

the solution of the following optimization problem:

x∗
i (p) ∈ argmax uT

i xi :=
∑
j∈G

uijxij

s.t. pTxi :=
∑
j∈G

pjxij ≤ wi,

xi ≥ 0

Suppose each good j ∈ G has a supply level s̄j. We call a price vector p∗ an equilib-

rium price vector if the market clears, namely for all j ∈ G,∑
i∈B

x∗(p∗)ij = s̄j.

In the lecture, we discussed how to compute the equilibrium price p∗ and buyers’

activities {x∗
i (p

∗)}i∈B under the equilibrium price based on utility coefficients {ui}i∈B,
budgets {wi}i∈B and supplies s̄:

({ui}i∈B, {wi}i∈B, s̄) ⇒ (p∗, {x∗
i (p

∗)}i∈B) (4)



In this question, we consider the inverse problem of (4): suppose the market does not

know the “private information” of each buyer, namely the utility {ui}i∈B and the bud-

gets {wi}i∈B, but instead you observe the equilibrium prices {p∗(k)}Kk=1 and their cor-

responding realized activities {x∗(k)
i }Kk=1 under K different supply levels s̄(1), . . . , s̄(K).

The query is to infer buyers’ utility coefficients {ui}i∈B and their budgets {wi}i∈B. We

assume that the utility function is ℓ1-normalized, namely ∥ui∥1 = 1 for i ∈ B.

Hint: Mathematically, the query is to find {ui}i∈B (s.t. ui ≥ 0 and ∥ui∥1 = 1) and

{wi}i∈B (s.t. wi > 0) such that for all i ∈ B, and k = 1, . . . , K,

x
∗(k)
i = argmax

xi

uT
i xi

s.t. (p∗(k))Txi ≤ wi

xi ≥ 0

given {x∗(k)
i }i∈B,k∈{1,...,K} and {p∗(k)}k∈{1,...,K}.

Question: Now consider the following 2-buyer 2-good example and solve this inverse

problem. Let B = {1, 2} and G = {1, 2}. Suppose we observe the following 5 scenarios:

• p∗(1) = (9
5
; 3
5
), x

∗(1)
1 = (1; 1

3
), x

∗(1)
2 = (0; 5

3
);

• p∗(2) = (2; 1), x
∗(2)
1 = (1; 0), x

∗(2)
2 = (0; 1);

• p∗(3) = (1; 1), x
∗(3)
1 = (2; 0), x

∗(3)
2 = (0; 1);

• p∗(4) = (1
2
; 1), x

∗(4)
1 = (4; 0), x

∗(4)
2 = (0; 1);

• p∗(5) = (3
7
; 6
7
), x

∗(5)
1 = (14

3
; 0), x

∗(5)
2 = (1

3
; 1).

Use any approach to find {ui}i∈B (s.t. ui ≥ 0 and ∥ui∥1 = 1) and {wi}i∈B (s.t. wi > 0).

Describe your approach and report the result.


