Z-Matrices

Definition. A matrix $M \in \mathbb{R}^{n \times n}$ is said to be a Z-matrix if all of its off-diagonal entries (if any) are nonpositive: $m_{ij} \leq 0$, for all $i \neq j$.

The class Z of such matrices is complete.

The diagonal entries of a Z-matrix are not sign-restricted, but the most interesting and important results are obtained for matrices M belonging to

$$K := P \cap Z.$$
Z-Matrices

Definition. A matrix $M \in \mathbb{R}^{n \times n}$ is said to be a Z-matrix if all of its off-diagonal entries (if any) are nonpositive: $m_{ij} \leq 0$, for all $i \neq j$.

The class Z of such matrices is complete.

The diagonal entries of a Z-matrix are not sign-restricted, but the most interesting and important results are obtained for matrices M belonging to

$$K := P \cap Z.$$

Minkowski matrices

Related to K-matrices are the so-called M-matrices. These are of the form

$$A = sI - B, \quad s \geq \rho(B), \quad B \geq 0 \text{ (elementwise)}$$

where $\rho(B)$ is the spectral radius of B.

Some important seminal references on this subject are:

In their 1962 paper, Fiedler and Pták gave 13 equivalent conditions for a Z-matrix to belong to P and hence to K.

There are many more. For example, in

the authors list 50 such conditions that are equivalent to the statement “A is a nonsingular M-matrix.” And the list is not complete!
Examples.

(a) The matrix M in the problem of finding the convex hull of a finite set of points in the plane is a symmetric (tridiagonal) K-matrix.

Definition. Symmetric K-matrices are called Stieltjes-matrices.

The form of the matrix above is the same as that which arises in the isotone regression problem

$$\begin{align*}
\text{minimize} \quad & \sum_{i=0}^{n} d_i (x_i - a_i)^2 \\
\text{subject to} \quad & x_0 \leq x_1 \leq \cdots \leq x_n
\end{align*}$$

where $d_i > 0$ and a_i is arbitrary for all i.

This problem is studied in the paper

(b) In Section 7.3 of his book *Introduction to Stochastic Processes*, E. Çinlar, discusses an optimal stopping (game) problem which leads to a linear program stated as

\[
\begin{align*}
\text{minimize} & \quad e^T v \\
\text{subject to} & \quad v \geq \alpha P v \quad (\alpha \in [0, 1]) \\
& \quad v \geq f \\
& \quad v \geq 0
\end{align*}
\]

The matrix P is square and row stochastic: the elements of each row are nonnegative and sum to 1. If $g := \max(f, 0)$, the last two constraints become $v \geq g$.

Now define $z := v - g$. Then the problem becomes

\[
\begin{align*}
\text{minimize} & \quad e^T z + e^T g \\
\text{subject to} & \quad (I - \alpha P)g + (I - \alpha P)z \geq 0 \\
& \quad z \geq 0
\end{align*}
\]
We ignore the additive constant $e^T g$ in the objective function and define

$$q = (I - \alpha P)g \quad \text{and} \quad M = I - \alpha P.$$

Then certainly $M \in \mathbb{Z}$ and possibly (depending on α) $M \in \mathbb{K}$.

The constraints

$$\begin{align*}
(I - \alpha P)g + (I - \alpha P)z & \geq 0 \\
z & \geq 0
\end{align*}$$

become just those of the LCP (q, M).

But the LP is not an LCP.

We will see that the two problems are equivalent.
Least element theory of polyhedral sets

Definition. A set $S \subseteq \mathbb{R}^n$ is a *meet semi-sublattice* under the componentwise ordering of \mathbb{R}^n if

$$
\text{for all } x, y \in S, \quad z = \min(x, y) \in S.
$$

The vector z is called the *meet* of x and y.

Proposition. If $M \in \mathbb{R}^{n \times n} \cap \mathbb{Z}$ and $q \in \mathbb{R}^n$, then $FEA(q, M)$ is a meet semi-sublattice.

Proof. This is a routine exercise.
Definition. A set $S \subseteq \mathbb{R}^n$ is bounded below if there exists a vector $u \in \mathbb{R}^n$ such that $x \geq u$ for all $x \in S$. If $u \in S$, then u is the least element of S.

A set that is bounded below need not have a least element. But if a least element exists, it must be unique.
Theorem. If $S \subseteq \mathbb{R}^n$ is a nonempty meet semi-sublattice that is closed and bounded below, then S has a least element.

Proof. Let $p \in \mathbb{R}^n_{++}$ and form the optimization problem

$$\text{minimize } p^T x \text{ subject to } x \in S.$$

(If S is polyhedral, this is a linear program.) Let $x' \in S$ be arbitrary. The problem above is equivalent to

$$\text{minimize } p^T x \text{ subject to } x \in S, x \geq u, p^T x \leq p^T x'.$$

This problem has a nonempty compact feasible region and hence an optimal solution, \hat{x}. This must be the least element of S, for if $x \in S$ is arbitrary, then $z = \min(x, \hat{x}) \in S$. By definition of \hat{x}, $p^T \hat{x} \leq p^T z$. But $z \leq \hat{x}$ and $p > 0$; thus we have $p^T z \leq p^T \hat{x}$. Hence $\hat{x} = z$.
Remark. The following theorem implies that $\mathbb{Z} \subset \mathbb{Q}_0$.

Theorem. If (q, M) is a feasible LCP with $M \in \mathbb{Z}$, then $\text{FEA}(q, M)$ contains a least element $u \in \text{SOL}(q, M)$.

Proof. Since $M \in \mathbb{Z}$, $S := \text{FEA}(q, M)$ is a meet semi-sublattice. It is nonempty, closed and bounded below, so it has a least element, u.

We need to prove $u_i(q + Mu)_i = 0$ for all i.

Suppose there is an i for which $u_i(q + Mu)_i > 0$. Define $z = u - \delta I_i$. It is easy to show that for sufficiently small $\delta > 0$, we have $z \leq u$ and $z \in \text{FEA}(q, M)$. This contradicts the least element property of u.

Remark. When $M \in \mathbb{Z}$, the linear complementarity problem (q, M) can be treated by a *linear programming* algorithm such as the simplex method.
Question. Is the least element solution of a feasible LCP (q, M) with $M \in \mathbb{Z}$ the only solution of the problem?
Question. Is the least element solution of a feasible LCP \((q, M)\) with \(M \in \mathbb{Z}\) the only solution of the problem?

Answer. No. Consider the example where

\[
M = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \quad \text{and} \quad q = \begin{bmatrix} -1 \\ 1 \end{bmatrix}
\]

The feasible region is the halfline

\[
\{ z : (z_1, z_2) = (1, 0) + \theta(1, 1), \ \theta \geq 0 \}
\]

every point of which solves \((q, M)\)
Theorem. Let \(M \in R^{n \times n} \). Then \(M \in \mathbf{Z} \) if and only if for every \(q \in R^n \), the set \(\text{FEA}(q, M) \) contains a least element that solves \((q, M)\).

Proof. We have already proved the sufficiency part. To prove the necessity, suppose that \(m_{ij} > 0 \) for some \(i \neq j \). Define \(q = I_j - M.j \). Then \(I_j \in \text{FEA}(q, M) \). Let \(x \) be the least element of \(\text{FEA}(q, M) \). Then \(0 \leq x \leq I_j \). So \(x_k = 0 \) if \(k \neq j \). In particular, for \(i \) (which does not equal \(j \))

\[
0 \leq (q + Mx)_i = -m_{ij} + \sum_{k=1}^{n} m_{ik}x_k \\
= -m_{ij} + m_{ij}x_j = m_{ij}(x_j - 1) \leq 0
\]

Hence \(x_j = 1 \) and \(x = I_j \). Since \(x \in \text{SOL}(q, M) \), we have

\[
0 = x_j(q + Mx)_j = (q + Mx)_j = 1.
\]

This contradiction shows that \(M \in \mathbf{Z} \).
Corollary. Let $M \in \mathbb{R}^{n \times n}$. Then $M \in \mathbf{K}$ if and only if for all $q \in \mathbb{R}^n$, the set $\text{FEA}(q, M)$ contains a least element which is the unique solution of (q, M).

Remark. This corollary gives a characterization of the class $\mathbf{K} = \mathbf{P} \cap \mathbf{Z}$ in terms of the LCP.

Recall that when $M \in \mathbf{P}$, we have $|\text{SOL}(q, M)| = 1$ for all q. Thus, given the \mathbf{P}-matrix M, there is a mapping $q \mapsto z(q)$, the unique solution of (q, M).

This notation will prove useful in the next result.
Proposition. Let M be a \mathbf{P}-matrix of order n. Then $M \in \mathbf{K}$ if and only if

\[[q^1, q^2 \in R^n, \quad q^1 \geq q^2] \implies [z(q^1) \leq z(q^2)].\]

(The solution mapping is antitone.)

Proof. If $M \in \mathbf{K}$ and $q^1 \geq q^2$, then $z(q^2) \in \text{FEA}(q^1, M)$. Hence $z(q^1) \leq z(q^2)$.

Conversely, if $z(q)$ has the antitonicity property and $m_{ij} > 0$ for some $i \neq j$, define

\[q^1 = I_{.j} - M_{.j} \quad \text{and} \quad q^2 = -M_{.j}. \]

Then $q^1 \geq q^2$. Clearly we have $z(q^2) = I_{.j}$.

Moreover, $z(q^1) \leq I_{.j}$ since $I_{.j} \in \text{FEA}(q^1, M)$.

This leads to a contradiction as in the previous theorem.
Theorem. If $M \in R^{n \times n} \cap Z$, the following are equivalent.

(a) $M \in K$.
(b) All *leading* principal minors of M are positive.
(c) M^{-1} exists and is (elementwise) nonnegative.
(d) $M \in S$.
(e) $M \in \bar{S}$.

Proof. (a) \implies (b). Obvious.

(b) \implies (c). This follows by induction and an elementary argument using principal pivoting and the Schur complement.

(c) \implies (d). Choose any $p \in R_{++}^n$ and define $x = M^{-1}p$. Then $x \geq 0$. (In fact $x > 0$, but this requires more discussion.) Thus, $Mx \geq 0, \ x \geq 0$ has a solution, and hence $M \in S$.
(d) \implies (e). Let $x > 0$ satisfy $Mx > 0$. Then clearly, for any $\alpha \subseteq \{1, \ldots, n\}$ we have $x_\alpha > 0$ and $M_{\alpha\alpha}x_\alpha > 0$, so $M \in \bar{S}$.

(e) \implies (a). Assume $M \in \bar{S}$. Then for any q the LCP (q, M) will be feasible. But M is also in \mathbb{Z}, so a least element solution u must exist. To complete the proof, it suffices to show that u is the only solution.

Let \tilde{z} be any solution of (q, M). Then $\tilde{z} \geq u$. Define the vector $v = q + Mu \geq 0$. Then $\tilde{z} - u \geq 0$ solves (v, M) because

$$v + M(\tilde{z} - u) = (q + Mu) + M\tilde{z} - Mu = q + M\tilde{z} \geq 0$$

and

$$0 \leq (\tilde{z} - u)^T[q + Mu + M(\tilde{z} - u)] = -u^T[q + M\tilde{z}] \leq 0.$$

However, this LCP has the unique solution 0, because $v \geq 0$ and $M \in \bar{S} = E$. Hence $\tilde{z} = u$.