Problem 1. Prove that the edges of a bipartite graph with maximum degree Δ can be colored with Δ colors such that no two edges that share a vertex have the same color.

Problem 2. A square matrix $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ is doubly stochastic if the entries of the matrix are nonnegative, and the sum of entries in every row and column is equal to one. The Birkhoff-von Neumann theorem states that one can write any doubly stochastic matrix as a convex combination of permutation matrices. Prove this theorem and show that we can write any doubly stochastic matrix as a convex combination of at most $n^2 - n$ permutation matrices.

Problem 3. We have the following Theorem:

Theorem 1 Let G be a graph and let M be a matching in G and let B be a blossom with respect to M. Then M is a maximum size matching in G if and only if M/B is a maximum size matching in G/B.

Give an example of a graph G, a matching M and a blossom B for M such that a maximum matching M^* in G/B does not lead to a maximum matching in G. Explain why this does not contradict Theorem 1.

Problem 4. A stable set S (sometimes, it is called also an independent set) in a graph $G = (V, E)$ is a set of vertices such that there are no edges between any two vertices in S. If we let P denote the convex hull of all (incidence vectors of) stable sets of $G = (V, E)$, it is clear that $x_i + x_j \leq 1$ for any edge $(i, j) \in E$ is a valid inequality for P.

1. Give a graph G for which P is not equal to

$$
\{x \in \mathbb{R}^{|V|} : x_i + x_j \leq 1 \quad \text{for all } (i, j) \in E \}
$$

$$
x_i \geq 0 \quad \text{for all } i \in V
$$

2. Show that if the graph G is bipartite then P equals

$$
\{x \in \mathbb{R}^{|V|} : x_i + x_j \leq 1 \quad \text{for all } (i, j) \in E \}
$$

$$
x_i \geq 0 \quad \text{for all } i \in V
$$

Problem 5. Consider a bipartite graph $G = (V, E)$ with bipartition (A, B). For $X \subseteq A$, define $\text{def}(X) = |X| - |N(X)|$ where $N(X) = \{b \in B : \exists a \in X \text{ with } (a, b) \in E\}$. Let

$$
\text{def}_{\text{max}} = \max_{X \subseteq A} \text{def}(X)
$$

Since $\text{def}(\emptyset) = 0$, we have $\text{def}_{\text{max}} \geq 0$.

1. Generalize Hall’s theorem by showing that the maximum size of a matching in a bipartite graph G equals $|A| - \text{def}_{\text{max}}$.

2. For any 2 subsets $X, Y \subseteq A$, show that
\[
def(X \cup Y) + \def(X \cap Y) \geq \def(X) + \def(Y)
\]

Problem 6. Derive the Hall’s marriage theorem from Tutte’s theorem.

Problem 7. (extra credit) A graph $G = (V, E)$ is said to be *factor-critical* if, for all $v \in V$, we have that $G \setminus \{v\}$ contains a perfect matching. In parts (a) and (b) below, G is a factor critical graph.

1. Let U be any minimizer in the Tutte-Berge formula for G. Prove that $U = \emptyset$.

2. Deduce that when Edmonds algorithm terminates the final graph (obtained from G by shrinking flowers) must be a single vertex.

3. Given a graph $H = (V, E)$, an *ear* is a path $v_0 - v_1 - v_2 - \ldots - v_k$ whose endpoints (v_0 and v_k) are in V and whose internal vertices (v_i for $1 \leq i \leq k - 1$) are not in V. We allow that v_0 be equal to v_k, in which case the path would reduce to a cycle. Adding (a ‘trivial’ ear) simply means adding an edge to H. An ear is called *odd* if k is odd, and even otherwise; for example, a trivial ear is odd.

 (a) Let G be a graph that can be constructed by starting from an odd cycle and repeatedly adding odd ears. Prove that G is factor-critical.

 (b) Prove the converse that any factor-critical graph can be build by starting from an odd cycle and repeatedly adding odd ears.

Problem 8. (Project Definition) Define your project title and team members. Projects should be done in teams of maximum two people.