Prophet Inequalities for Matching

Recap

Online bipartite matching (OBM)
- Fractional: $1 - \frac{1}{e}$, tight
- Integral: $1 - \frac{1}{e}$, tight
- Adwords (small bids): $1 - \frac{1}{e}$, tight

All adversarial.

Today

OBM in a Bayesian environment.

Edge-Arrival

- Bipartite graph $G = (A \cup B, E)$ given upfront along with ordering \preceq of E
- E is known
- \mathcal{E}
- Edge e has weight sampled from $X_e \sim \text{exp}(\lambda)$ (all indep.)
- Edges arrive in order $E_0(1), E_0(2), \ldots, E_0(n)$
- Reveals weight $w_e \sim X_e$, we must decide irrevocably whether to match

Good benchmark?

Today’s focus: Optimum offline algorithm, opt_off

Sees (random) realization of entire graph, gets max-weight matching.

Def Algorithm A is α-competitive if

$$E[A] \leq \alpha \cdot E[\text{opt}_\text{off}]$$
OPT off also referred to as prophet (hence the name "prophet inequalities")

Starting Point Star graph (i.e., single-item)

E.g.

\[
\text{Unif}[1, 100] \rightarrow 7 \quad \text{(reject)}
\]

\[
10 \cdot \text{Ber}(1/2) \rightarrow 0 \quad \text{(reject)}
\]

\[
\text{Unif}[4, 8] \rightarrow 6.5 \quad \text{(accept)}
\]

Obs Optimal algorithm computable via backwards induction.

Obs No online algo is \(\geq 1/2 \) - competitive.

\[
E[A] = 1
\]

\[
E[\text{opt}
\text{off}] = 6(\frac{1}{e}) + (1 - e) 1
\]

\[
= 2 - e
\]
Thm [KSG’78] There is always a $\frac{1}{2}$-competitive algorithm.

We will see a proof via Online Contention Resolution Schemes (OCRS).

To motivate this, we introduce the \textit{ex-ante} relaxation.

$g_e: [0,1] \rightarrow \mathbb{R}_{\geq 0}$

$g_e: P \mapsto \mathbb{E}[x_e \mid x_e \text{ realized in top } P \text{ quantile of its distribution}].$

\underline{Ex-ante Relaxation}

$$\max \sum_e g_e(x_e)$$

s.t. $x_e \geq 0,$ $\sum_e x_e \leq 1.$

\underline{Obs. Ex-ante-OPT \geq \mathbb{E}[opt_{off}].}

Strategy Let x_e^* be optimum, conditioned on e realizing in top x_e^* quantile, accept w.p. $\geq \frac{1}{2}.$

[FSZ’16]

\underline{Single-item OCRS} Given n items e_1, \ldots, e_n

where e_i is active independently w.p. $x_i \geq 0,$

and $\frac{1}{\sum} x_i \leq 1.$
• Edges arrive in order and reveal their active status

• Want to design an algorithm to accept ≤ 1 active element.

Def A is c-balanced if for all i,
\[
P[A \text{ selects } e_i] \geq c \cdot x_i.
\]

Claim There exists a $1/2$-balanced single-item OCRS.

Pr Upon arrival of e_i, if no edge selected so far and e_i active, choose it w.p.
\[
\frac{1/2}{1 - \frac{1}{2} \sum_{i' < i} x_{i'}}.
\]

Show $P[\text{select } e_i] = \frac{1}{2} x_i$ by induction on i.

Online algo. Let $\{x^*_e\}$ be optimum for ex-ante.
Treat e as "active" iff X_e realizes in top x^*_e-quantile.
Run $1/2$-balanced OCRS
Next Edge-arrival matching via edge-arrival OCRS.

* \(\{ x_e \} \text{ now in matching polytope} \)

Natural \(c \)-balanced algorithm

If \(e = (uv) \) is active and feasible to add, do so w.p. \(c / \mathbb{P}[u,v \text{ free}] \).

Claim [EFGT '20]. Above is well-defined with \(c = \sqrt[3]{3} \).

* Proof Union bound!

\[
\mathbb{P}[u,v \text{ free}] \geq 1 - \mathbb{P}[u \text{ matched}] + \mathbb{P}[v \text{ matched}]
\]

(by induction) \[\Rightarrow 1 - c \left(\sum_{e' \in e} x_{e'} + \sum_{e' \in e N(u)} x_{e'} \right) \]

\[\geq 1 - 2c \]

So \[\frac{c}{\mathbb{P}[u,v \text{ free}]} \leq \frac{c}{1 - 2c} = 1 \]

\[\uparrow \text{ for } c = \sqrt[3]{3} \]

Note Current bounds on comp. ratio: \([0.341, \frac{3}{7}] \) (bipartite)
Prophet Secretary for matching

Motivation: how important is adversarial order?

Starting point Star graph (i.e., single-item) \(\{ 1, \frac{1}{\epsilon}, \text{Ber} (\epsilon) \} \) only gives hardness of \(3/4 \)

Q Can we beat \(1/2 \)?

A Yes!

Single-item Ro-OCKS \(\epsilon \) active w.p. \(x_\epsilon \), \(\epsilon \)'s arrive in uniformly random order, want

\[\Pr[\text{select active } \epsilon] \geq C \cdot x_\epsilon \]

Obs \(C \leq 1 - \frac{1}{\epsilon} \)

If consider \(x_\epsilon = \frac{1}{n} \) for \(n \) els \(\epsilon \)

For that example, taking the first active elt. works. Not always, however...

say \(x_1 = \epsilon \), \(x_2 = 1 - \epsilon \)

\[\Pr[\text{take } x_1] = \frac{1}{2} \cdot \epsilon + \frac{1}{2} \cdot (1 - \epsilon) = \epsilon \left(\frac{1}{2} + \frac{\epsilon}{2} \right) \]
Tuni [LS'18] Can achieve $c = (-Ye)$.

Pf Sample random arrival times $t_1, \ldots, t_n \sim \text{Unif}[0, 1]$ independently.

\textbf{Algorithm}

Upon arrival of e_i, if active take w.p. $\frac{e^{-x_i t_i}}{\text{downsampling}}$

\textbf{Analysis}

Analyze

(*) $\text{Pr}[e_i \text{ available } | t_i = Y]$

This happens iff for every $j \neq i$, $t_j > x_i$, e_j inactive, or e_j did not survive downsampling.

(*) = \prod_{j \neq i} \left(1 - \int_0^{x_i} e^{-zx_j} \, dz \right)

= \prod_{j \neq i} \left(1 - \left[e^{-zx_j} \right]_0^{x_i} \right)

= \prod_{j \neq i} e^{-yx_j} = e^{-y \sum_{j \neq i} x_j}$
\[P[\text{select } e_i] = \int_0^1 x_i e^{-x_i y} e^{-\sum_{j \neq i} x_j} \, dy \]

\[\geq \int_0^1 e^{-y} \, dy = x_i \left(1 - \frac{1}{e} \right). \]

Discussion

1 - \(\frac{1}{e} \) is tight for RO-OLRS, but still gaps in knowledge for prophet secretary.

Esfandiari et al. '15: \[[1 - \frac{1}{e}, 0.75] \]

Azar et al. '18: \[\geq 1 - \frac{1}{e} + \frac{\sqrt{400}}{400} \]

Correa et al. '21: \[[0.669, 0.732] \]

Beyond star-graphs

Claim Can achieve a 0.432-approx. for matching in general graphs.

Proof sketch Apply same downsampling as for single-item!