
MS&E 319: Matching Theory
Instructor: Professor Amin Saberi (saberi@stanford.edu)

Lecture 1: Perfect Matching Testing via Matrix Determinant

1 Polynomial Identity

Suppose we are given two polynomials and want to determine whether or not they are identical. For example,

(x− 1)(x+ 1)
?
= x2 − 1.

One way would be to expand each polynomial and compare coefficients. A simpler method is to “plug in”

a few numbers and see if both sides are equal. If they are not, we now have a certificate of their inequality,

otherwise with good confidence we can say they are equal. This idea is the basis of a randomized algorithm.

We can formulate the polynomial equality verification of two given polynomials F and G as:

H(x) ≜ F (x)−G(x)
?
= 0.

Denote the maximum degree of F and G as n. Assuming that F (x) ∕= G(x), H(x) will be a polynomial of

degree at most n and therefore it can have at most n roots. Choose an integer x uniformly at random from

{1, 2, . . . , nm}. H(x) will be zero with probability at most 1/m, i.e the probability of failing to detect that

F and G differ is “small”. After just k repetitions, we will be able to determine with probability 1− 1/mk

whether the two polynomials are identical i.e. the probability of success is arbitrarily close to 1.

The following result, known as the Schwartz-Zippel lemma, generalizes the above observation to polynomials

on more than one variables:

Lemma 1 Suppose that F is a polynomial in variables (x1, x2, . . . , xn), and that F is not identically zero.

For 1 ≤ i ≤ n, let di be the degree of F (·) in xi. Also, for 1 ≤ i ≤ n, let Ii be a finite subset of elements in

the domain of xi. Then the number of roots of F (·) in set I1 × · · ·× In is at most:
󰀣

n󰁛

i=1

di
|Ii|

󰀤
n󰁜

i=1

|Ii|

Proof: The case n = 1 is obvious since a nonzero polynomial of degree d can have at most d real roots. We

proceed by induction on n. Let F ′ be the polynomial on x2, . . . , xn, a polynomial on at most n−1 variables.

If (y2, · · · yn) is not a zero of F ′, F (x1, y2.....yn) has at most d1 zeros in I1. By inductive hypothesis we have

a bound on the number of roots of F ′ in I2 × · · · × In. It follows that the total number of zeros of F in

I1 × · · ·× In is bounded by

d1(|I2| · · · |In|) +
󰀣󰀣

n󰁛

i=2

di
|Ii|

󰀤
n󰁜

i=2

|Ii|
󰀤
|I1|

which gives the desired bound.

2 Perfect Matchings in Bipartite Graphs

Given a bipartite graph G(U,V,E) where |U | = |V | = n, define the matrix A as follows:

aij =

󰀝
1 if i ∼ j, i ∈ U, j ∈ V

0 otherwise.
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where ∼ means vertices i and j are adjacent in G. Recall that a matching is a set of edges such that no two

have a vertex in common. A perfect matching is one that covers all vertices of G.

Lemma 2 If det(A) ∕= 0 then G has a perfect matching.

Proof: Recall the definition of determinant:

det(A) =
󰁛

π∈Π

sgn(π)

n󰁜

i=1

aiπ(i)

where Π is the set of all permutations of {1, . . . , n}. Recall that a permutation of size n is just a bijection

from {1, . . . , n} 󰀁→ {1, . . . , n}. The sign sgn(π) of a permutation π is +1 if the number of inverted pairs

is even and it is −1 if the number of inverted pairs is odd (pair i and j are inverted in π if i < j and

π(i) > π(j)). One can also see a permutation π as describing a perfect matching in a bipartite graph: for

each vertex i ∈ U , we match it to vertex π(i) ∈ V .

For a bipartite graph G with adjacency matrix A, the value of
󰁔n

i=1 aiπ(i) will be non-zero if and only if all

terms aiπ(i) are nonzero, i.e. each (i,π(i)) is an edge of G, so π describes a perfect matching in G. Since

the determinant is the sum of these terms, it follows that if det(A) is nonzero there must exist at least one

perfect matching in G.

Since computing the determinant of a matrix is easy, this gives us a simple test for determining if G has a

perfect matching. However, this only gives us a sufficient condition, not a necessary one. It is possible that

G has many perfect matchings, but has equal numbers of ones with odd and even permutations, leaving

det(A) = 0. So how can we modify this so that it is also a necessary condition?

For variables xij define the matrix B such that

bij =

󰀝
xij if i ∼ j, i ∈ U, j ∈ V

0 otherwise.

Lemma 3 det(B) ∕= 0 if and only if G has a perfect matching.

Proof: ⇒: Choose the permutation π that corresponds to a nonzero term
󰁔n

i=1 biπ(i) in det(B). Then

{i,π(i)} for i = 1, . . . , n gives a perfect matching.

⇐: set all xij corresponding to edges in a perfect matching to 1 and the rest to 0. It follows that det(B) ∕= 0.

This suggests the following algorithm to determine whether G has a perfect matching. We just need to see

if a multivariate polynomial of degree at most n is equivalent to 0. There can be up to n! terms in the

determinant of B, but we can apply the “randomized polynomial equality testing” given in section 1 to

design an efficient algorithm.

Algorithm 1 Randomized algorithm to detect a perfect matching.

1. set xij to be a number chosen uniformly at random from {1, . . . , n2m}
2. compute det(B)

3. if det(B) = 0 repeat until confidence is above the desired threshold

The polynomial corresponding to det(B) is of degree one in each xij ; there are at most n2 variables, thus

the probability that we choose a root is at most 1/m in one trial. As before, k trials yield a probability

1− 1/mk of failure.
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3 Perfect Matching in General Graphs

For a given graph G(V,E) and variables xij define the Tutte matrix T as follows:

tij =

󰀻
󰀿

󰀽

xij if i ∼ j, i > j

−xji if i ∼ j, i < j

0 otherwise.

The intuition is that while a bipartite graph has no odd cycles, a general graph G might. For this reason,

in a general graph, not every permutation π such that {i,π(i)} is an edge in G will correspond to a perfect

matching. The Tutte matrix addresses this problem by ensuing that all odd cycles cancel each other out.

To be more precise, we state the following lemma.

Lemma 4 det(T ) ∕= 0 iff G has a perfect matching.

Proof: ⇐: Since G has a perfect matching |V | = n is even. Given perfect matching M with each edge and

(arbitrarily) ordered pair (i, j). Set xij = 1 for (i, j) ∈ M and i > j, otherwise set xij = 0. Let π be a

permutation such that for each (i, j) ∈ M we have i = π(j) and j = π(i). Now consider the term
󰁔n

i=1 tiπ(i)
of det(T ). It is is clearly equal to 1. Moreover, all other terms are zero, therefore det(T ) ∕= 0.

⇒: Note that a permutation π can be decomposed into a collection of cycles where each element exchanges

places with the next. For example the permutation 2, 1, 3 of 1, 2, 3 is decomposed into σ1σ2 = (3)(1, 2). Any

permutation on n elements can be uniquely expressed as a collection of disjoint cycles.

Suppose permutation π has odd cycle σ = (i1, i2, . . . , ir), i.e r is odd, so that ik+1 = π(ik). Consider

permutation π′ which is the same as permutation except that the cycle σ is reversed, i.e. ik = π′(ik+1). It

is not hard to check that

sgn(π)

n󰁜

i=1

tiπ(i) = −sgn(π′)

n󰁜

i=1

tiπ′(i)

since we negate an odd number of terms in the product corresponding to π′ by definition of T but the sign

of the two permutations remains the same. Then when evaluating det(T ) we note that permutations with

odd cycles cancel out. (note that cycles of length 1 evaluate to zero above since we assume G is simple).

Thus since det(T ) ∕= 0, T must have a permutation whose corresponding cycle decomposition consists only

of even cycles. Note that each such cycle corresponds to a perfect matching over the vertices in it. Since the

cycles are always disjoint we have a perfect matching in G.

We can use Algorithm 1 to detect a perfect matching in a general graph by using matrix T instead of B.

Next we extend the randomized algorithm for detecting the existence of a perfect matching in a graph to

actually finding a perfect matching. The key computational step will be matrix inversion.

4 The Isolating Lemma

First we establish a key (and surprising) property of subsets of random numbers:

Definition: A set system (S, F ) consists of a finite set S of elements, S = {x1, x2, . . . , xn} and a family F

of nonempty subsets of S, i.e. F = {S1, . . . , Sk} such that Sj ⊆ S and Sj ∕= ∅ for j = 1, . . . , k.

For each element of S, assign weight wi to xi, where wi is chosen uniformly at random and independently

from {1, 2, 3, . . . , 2n}. Denote the weight of set Sj to be
󰁓

xi∈Sj
wi.
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The Isolating Lemma: The probability that there is a unique minimum weight set is at least 1/2.

Proof: Fix the weight of all elements except xi. Given F , define the threshold for element xi to be the

number αi such that if wi > αi then xi is in no set with minimum weight, and if wi ≤ αi then xi is in some

set with minimum weight.

Clearly, if wi < αi, then xi is in every set with minimum weight. The only ambiguity occurs when wi = αi.

In this case we say that xi is singular.

A key observation is that the weight of element xi is independent of the threshold value αi. Since wi is

chosen uniformly at random from {1, . . . , 2n}, the probability that an element is singular is at most 1
2n .

Observation 1 If no element is singular, then the subset with minimum weight is unique.

Since S contains n elements, the probability that S contains a singular element is at most n · 1
2n = 1/2.

Thus, with probability at least 1/2, there exists no singular element, implying the lemma:

5 Finding a Perfect Matching in a Bipartite Graph

Given a bipartite graph G(U, V,E), assign to each edge {i, j} ∈ E a weight wij chosen uniformly and

independently from {1, . . . , 2m}, where m = |E|. By the isolating lemma, the minimum weight perfect

matching in G will be unique with probability at least 1/2.

As in the previous lecture, we define the matrix B such that

bij =

󰀝
xij if i ∼ j, i ∈ U, j ∈ V

0 otherwise.

Set each xij = 2wij . Let Bij be the matrix obtained from B by removing the ith row and jth column. Now,

suppose that there is a perfect matching, call it M , and furthermore, suppose it has a unique minimum

weight W . Recall from the previous lecture that det(B) ∕= 0 if and only if there exist a perfect matching in

the graph G. We can now state two useful lemmas regarding the value of det(B).

Lemma 5 det(B) ∕= 0 and the highest power of 2 that divides det(B) is 2W .

Proof: Since we’ve assumed the existence of M we must have det(B) ∕= 0. Also, recall that by definition

det(B) =
󰁛

π∈Π

sgn(π)

n󰁜

i=1

biπ(i)

Let πM be the permutation corresponding to M , with
󰁔n

i=1 biπM (i) = 2W . The value of every other permu-

tation is either 0 or 2W
′
with W ′ > W . If we factor out 2W then all the terms in the sum are even numbers

except for the term corresponding to permutation πM , which is 1. Thus det(B) = 2W r where r is an odd

number.

Lemma 6 The edge (i, j) belongs to M if and only if det(Bij)/ 2
W−wij is odd.

Proof: Note that

det(Bij)2
wij =

󰁛

π:π(i)=j

sgn(π)

n󰁜

i=1

bi,π(i)
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Let πM be the permutation corresponding to M , so πM appears in the sum above. As in the proof of Lemma

5, its weight is 2W and all other permutations will either have weight 0 or 2W
′
with W ′ > W . Therefore,

2W will be the highest power of 2 which divides the right hand side. The result of that operation makes the

right hand side odd and the forward direction follows.

Now, if (i, j) /∈ M , then all permutations π in the sum will have weight zero or 2W
′
with W ′ > W . It then

follows that dividing both sides by 2W leaves the right hand side even. This implies the backwards direction.

Using Lemma 5 we can recover W by calculating the determinant of B, computing the highest power of 2

that divides its value and taking log base 2. Lemma 6 gives us a way of recovering the edges which belong to

M . For each edge we have to compute det(Bij) and check if det(Bij/2
W−wij is odd. This may seem difficult

but we have a nice way of doing this via matrix inversion. Recall that the adjoint of a matrix B, denoted

adj(B) is a matrix in which entry ij is given by (−1)i+jdet(Bji), the transpose of the cofactor matrix of B.

Now we use the following useful result from linear algebra.

adj(B) = B−1det(B)

By inverting B we can recover the values det(Bij) for each edge, and test if that edge is in the matching M .

The following is an algorithm summarizing the procedure.

Algorithm 2 Randomized algorithm to find a perfect matching

1. compute det(B) and obtain W and let M = {}
2. compute adj(B) and recover each det(Bij)

3. for each {i, j} ∈ E if det(Bij)/2
W−wij is odd and add {i, j} to M .

Since M will be unique with probability at least 1/2, we only need to run this algorithm a constant number

of times to have an arbitrarily high probability of success!

6 Finding a Perfect Matching in a General Graph

Here, we consider any undirected simple graph G(V,E) where |V | = n (note, the number of vertices was 2n

in the bipartite case). Recall from last lecture the definition of the Tutte matrix T of G:

tij =

󰀻
󰀿

󰀽

xij if i ∼ j, i > j

−xij if i ∼ j, i < j

0 otherwise.

As in the bipartite case, set each xij = 2wij , where wij is chosen uniformly at random and independently

from {1, . . . , 2m} where m = |E|.

We have shown in the previous lecture that

det(T ) =
󰁛

π∈Π

sgn(π)

n󰁜

i=1

tiπ(i)

does not equal zero if and only if G has a perfect matching. Recall that any permutation π on n elements can

be uniquely expressed as a collection of disjoint cycles π = σ1σ2 . . .σk. We have shown that permutations

with an odd length cycle in their cycle decompositions cancel out and do not contribute to det(T ). Thus we

only need to consider permutations containing even length cycles.

Now, consider a perfect matching M of G. We state two useful lemmas.
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Lemma 7 There exists a permutation πM corresponding to M which has a cycle decomposition composed

only of cycles of length 2.

Proof: This is easy to see since each cycle of length 2 contains two elements which, since the cycles must

be disjoint, correspond to vertices that are endpoints of edges in M .

Lemma 8 Any permutation π′
M corresponding to M with a cycle of length greater than 2 increases det(T )

more than some πM from lemma 7.

Proof: To see this let σ = (i1, i2, . . . , ir) be a cycle of even length in permutation π′
M . Consider the

corresponding cycles in πM which are either (i1, i2) . . . (ir−1, ir) or (ir, i1) . . . (ir−2, ir−1). Say that the first

has a product over tij with value a2 and the second has value b2. These values are powers of 2 since each

edge is in the product exactly twice i.e. xij and −xij . Then the product over σ is

ab =

r󰁜

j=1

tijij+1 .

Note that min{a2, b2} ≤ ab so one of the matchings πM made up of only cycles of length 2 will have have

less contribution to det(T ).

Now let M be a prefect matching of minimum weight W . By lemmas 7 and 8, a permutation πM corre-

sponding to M must have a term (−1)n/222W in the sum in det(T ) and all other terms will be of the form

22W
′
with W ′ > W . Thus we can conclude lemmas analogous to lemmas 5 and 6, stated here without proof.

Lemma 9 det(T ) ∕= 0 and the highest power of 2 that divides det(T ) is 22W .

Lemma 10 The edge {i, j} belongs to M if and only if det(Tij)/ 2
2W−wij is odd.

The algorithm to find the minimum matching in general graphs is the same as algorithm 2 except we replace

B by T and W by 2W .


