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Introduction

The goal of graph sparsification is to take a dense graph and find some sparse (weighted) subgraph which
preserves the spectrum of the graph. Sparsification provides a powerful tool for converting large graphs
into a much more succinct representation where a lot of the global and local properties of the graph are
preserved. Formally, given a dense graph G, we want to find a sparse (weighted) graph H such that the
following property holds.

(1− ε)LG � LH � (1 + ε)LG

That is, we require the following bounds on the quadratic form for all x ∈ Rn.

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx

In particular, if x is the characteristic vector of a cut (S, S) the we obtain a tight relationship between the
cut in G and the weighted cut in H.

(1− ε)EG(S, S) ≤ EH(S, S) ≤ (1 + ε)EG(S, S)

Note that this is a very strong requirement. Recall that in our lectures on thin trees we obtained results of the
form where 1 ≤ ET (S, S) ≤ 2EG(S, S). Note that this condition additionally implies a strong preservation
of the spectrum of LG in LH . That is, for all i ∈ [n] the ith eigenvalue is preserved.

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

This type of approximation will hold even for the pseudoinverse, so the effective resistances are preserved. We
will show that, while the graph sparsification requirement is strong, we can obtain such a sparsification with
high probability through a straight-forward sampling algorithm. The applications of such a sparsification
are abundant; in particular, any question of the form LGx = b can be reframed as LHx ≈ b.

Sparsification through Sampling

Perhaps, the simplest idea to build a sparse version of G is to sample edges uniformly at random until the
spectrum of H, the sampled graph is close enough to G. The trouble with this algorithm is that it may need
to sample O(n2) edges just to obtain a connected graph. For example, consider two cliques connected by
a single cut edge. We will need to sample a quadratic number of edges in expectation to have a resonable
chance of having sampled the cut edge. At the same time, in order to have a multiplicative bound relating
the eigenvalues of the two graphs, we need H to be connected.

Here, we present a sparsification algorithm of Spielman and Srivastava, which fixes this particular problem.

Sparsify(G, q):

• Sample an edge e ∈ E with probability pe = Reff(e)
n−1

• add e to H with weight 1
peq

• Repeat q times, sampling independently wiht replacement

Theorem 1. For some constant c and q = cn log n/ε2, with probability p > 1/2, H ← Sparsify(G, q)
satisfies (1− ε)LG � LH � (1 + ε)LG.

This means that after sampling Θ(n log n) edges, we can construct a sparsified version of G that preserves
the cut structure at least half the time. We can repeat this procedure Θ(log n) times (or simply sample more
edges) to boost the probability of success to Θ(1/poly n). In what follows, we will argue why the algorithm
produces a sparsifier as desired.
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Proof. First, recall that the sum of effective resistances over all edges is n−1, so pe induces a legal probability
distribution over the edges. Then, consider the diagonal m×m matrix S defined as S[e, e] = weight of e in
H. We can see that S is equivalently defined as follows.

S[e, e] = (number of times e is selected) · 1

peq

Note that the Laplacian of H can be computed as LH = BTSB, where S selects and re-weights the edges
of LG = BTB. Moreover, we can see that E [LH ] = LG. This is most easily seen because E [S] = I, due to
the fact that q edges are sampled with probability pe, and upon sampling e, 1

peq
is added to the weight. An

interesting aspect of this algorithm is that it relies on the fact that E [S] = I and the fact that S is far from
I – remember that S is sparse, and only O(n log n) of its O(n2) entries will be non-zero.

Now we will argue that LH and LG are spectrally similar with high probability. Recall we defined Y =
BL†BT , which has the property that Y 2 = BL†BTBL†B = BL†LL†BT = Y . We also note that Im(Y ) =
Im(B). Clearly, Im(Y ) ⊆ Im(B). If z ∈ Im(B) then z = Bx for some x, so Y z = BL†BTBx = Bx = z, and
z ∈ Im(Y ). With this in mind, we show the following lemma.

Lemma 2. If ‖Y SY − Y ‖2 ≤ ε, then (1− ε)LG � LH � (1 + ε)LG.

To see this lemma, consider some z in the image of B, and therefore the image of Y .

zTY SY z = xBTBL†BTSBL†BTBx = xTBTSBx = xTLHx (1)

zTY z = xTBTY Bx = xTLGx (2)

zT z = xTBTBx = xTLGx (3)

Note that it should not be surprising that zT z = zTY z, as Y acts as the identity for z ∈ Im(Y ). We
know that the matrix norm maximizes the quadratic forms in (1) and (2), so if ‖Y SY − Y ‖2 ≤ ε then
|xTLHx− xTLGx| ≤ ε. Thus, we get the following inequalities

−ε ≤ xTLHx− xTLGx
xTLGx

≤ ε

which rearrange to the desired conditions.

Finally, we use a Chernoff Bound to argue that the ‖Y SY − Y ‖2 ≤ ε with probability p > 1/2.

Lemma 3. Let D be some probability distribution over Ω ⊆ Rd where for all z ∈ Ω, ‖E
[
zzT

]
‖2 ≤ 1 and

‖z‖2 ≤ M . Suppose we take q independent samples from D, z1, z2, . . . , zq. Then the expected difference
between the empirical mean and the expected value of the outer products of z ∈ Ω is bounded as follows.

E

[∥∥∥∥∥1

q

∑
i

ziz
T
i − E

[
zzT

]∥∥∥∥∥
2

]
≤ min

(
cM

√
log q

q
, 1

)

That is, if we have a distribution over a subset of Rd and the expected norm of the outer product of a sample
is bounded by 1 and every supported z has bounded norm, then we get concentration about the expected

value of E
[
zzT

]
. So consider the following distribution: z = Y (·,e)√

pe
with probability pe.

Then, for every z, the norm is bounded as follows.

‖z‖2 =

√
〈Y (·, e), Y (e, ·)〉

pe
=

√
Y (e, e)

pe
=

√
Reff

Reff(e)
n−1

=
√
n− 1
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Additionally, we can see expected value of zzT is Y .

E
[
zzT

]
=
∑
e

pe
Y (·, e)Y (·, e)T

pe
= Y

Thus, if we allow q = Θ( c
2n logn
ε2 ), we can see that the conditions will be met with probability p ≥ 1/2.

As a conclusion, we note that sparsifying a complete graph can be seen as one way of sampling an Erdös-Rényi
graph H ∼ G(n, q/

(
n
2

)
). Also, if we know that our graph is complete, a random d-regular graph actually gives

better sparsification. In fact, we know that for a d-regular graph, if we define σ2 = max(λ2(A),−λn(A))
then σ2 ≤ 2

√
d− 1 + o(1).
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