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Probability, part II1

1 Random variables

• Recall idea of a variable and types of variables: ...
• Will now redescribe in probability theory terms as a random variable. Here is a techni-
cal/mathematical definition:

Defn: A random variable is a function that assigns a number to each point in a sample
space S.

For social science purposes, a more intuitive definition is this: A random variable is a process
or mechanism that assigns values of a variable to different cases.

• e.g.: Let S = {a list of countries}, with an arbitrary country in the sample space de-
noted s ∈ S.

1. ThenX(s) = 1990 per capita GDP of country s is a random variable. For instance,

X(Ghana) = $902
X(France) = $13, 904

etc...

2. Likewise, Y (s) = 1 is country s had a civil war in the 1990s, and Y (s) = 0 if not,
is a random variable.

3. S = {list of survey respondents}, X(s) = Party ID of respondent s.

• Typically, we will drop the notation X(s) and just write X and Y , leaving it implicit
that this a random variable that associates a number to each point in a sample space.

• Why “random”?

– Because we will be thinking about “experiments” where we draw a point or collec-
tion of points from the sample space at random or according to some probability
distribution.

1Notes by James D. Fearon, Dept. of Political Science, Stanford University, October 2001.
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– Because we may believe that the process that assigns a number like GDP (the value
of the variable) to a case has a random or stochastic element.

– Some statisticians, like Friedman, actually define a random variable as “a chance
procedure for generating a number,” by which he means some repeatable process
that has a well-understood source of randomness and for which “objective” proba-
bilities can in principle be computed.

– For others (and most social scientists, I think) there is no necessary implication that
the value of the variable (e.g., a country’s per capita GDP) is actually produced by
a stochastic process, although in fact this is often how we will think about it (treat
as “as if” the result of a repeatable random process).

∗ e.g.: an individual’s propensity for suicide is assumed to be based on character-
istics of the person (such as degree of social integration) plus “random noise”

∗ e.g.: a particular measurement of the weight of an object is understood to be
produced as equal to true weight + bias + noise.

• Observation: Things that are true of functions are also true, generally, of random
variables.

– Thus, if if X(s) and Y (s) are random variables (defined on the same sample space),
then so areX(s)+Y (s), X(s)−Y (s), X(s)Y (s), andX(s)/Y (s) (provided Y (s) 6= 0
for all S).

– In general: Thm : If φ(z) is a function and X(s) is a random variable, then
φ(X(s)) is a random variable as well.

– How are such combinations and compositions of two random variables formed?
Case by case. For example, we form Z(s) = X(s) + Y (s) by adding the the values
of X(s) + Y (s) for each point s in the sample space.

• Important: Instead of working with a probability distribution or measure defined on
the sample space S, it is often more convenient to work with the implied probability
distribution on the different possible values of the random variable X(s).

• Let

f(x) = P ({s|X(s) = x}).

Thus, f(x) is the probability that the random variable will take the value x. The set
{s|X(s) = x} is the set of all points in the sample space (possible outcomes of the
experiment) such that X(s) = x. (Note: We need to do it like this because there might
be many such s ∈ S.)
• So f(x) is a probability distribution on possible outcomes of X(s) which need not be
the same as the probability distribution on the state space S.
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– e.g.: Let X(s) be the number of heads that appear in two tosses of a fair coin, with
S taken as {hh, ht, th, tt}. Then

f(0) = P ({tt}) = 1/4
f(1) = P ({ht, th}) = 1/2
f(2) = P ({hh}) = 1/4
f(x) = 0 for all other x 6= 0, 1, 2

– e.g.: Let X(s) be 1 for dyad years with a war and 0 for dyad years with no war,
with S taken as a sample of dyad years. Then

f(0) = P ({s : s is a peaceful dyadyear}) = .999
f(1) = P ({s : s is dyad year at war}) = .001

• From now on, we will often work directly with random variables and the associated
probability distributions on them as defined here, bypassing the underlying sample
space.

2 Discrete random variables

Defn: A random variable X has a discrete probability distribution f(x) if X can take only
a finite number of values (or a countably infinite number of values).

• e.g.: Let X be the number of heads in n tosses of a fair coin (thus X is a random
variable). Then for x ∈ {0, 1, 2, . . . , 10},

f(x) =

(

10

x

)

1

210
,

and for all other x, f(x) = 0.

Plot with Stata ...

• Note that this is the same idea as for a histogram, which may take a more continuous
variable, group it into categories, and display the probability associated with each of
these categories.

• e.g.: Let X be the number of bills sent by Congress to the president in a given year.
f(x) would then refer to the probability that x bills are sent.

Another way to describe the probability distribution of a random variable ...
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Defn: If a random variable X has a discrete probability distribution given by f(x), then
the cumulative distribution function (c.d.f) of X is

F (x) = P (X ≤ x).

• In words, F (x) is the probability that the random variable produces a value of less than
or equal to x.

• e.g.: Graph the c.d.f. of a random variable distributed by a binomial distribution for
n = 2 and p = 1/2. ...

• e.g.: for n = 3 ...

Defn: If an experiment or process produces two random variables X and Y , then the joint
probability distribution of X and Y may be written as

f(x, y) = P (X = x & Y = y).

• e.g.: You roll two dice, letting X be the random variable referring to the result on the
first die, and Y the value that shows on the second. What is f(x, y)?

• recall defn of independence, example where it does not hold (e.g., income and life
expectancy) ..

• Draw 3D picture of a discrete joint density ...

3 Continuous random variables

• Whenever you work with a sample space S that is finite, then you get a discrete distri-
bution f(x). The samples we observe in practice are always finite and thus have discrete
distributions.

• For theoretical reasons, though, it is extremely useful to be able to represent the idea
of a sample space that is (uncountably) infinite.

• e.g.: Take as the sample space all the points in the unit interval, so that S = [0, 1], with
typical element x ∈ [0, 1].
• Suppose further that we consider a probability measure such that every point in this
interval is equally likely. This is called a uniform distribution on [0, 1], and is often
denoted U [0, 1].
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• How characterize in terms of a probability distribution function like f(x) for a discrete
distribution? A paradox: If there are an infinite number of possible outcomes in the
sample space, and each is equally likely, then what is the probability of any particular
point, e.g., s = .378? ... if 0, won’t work, if positive, won’t work ...

• Instead, we define a probability measure that assigns positive probability numbers only
to sets of points in [0, 1], and in particular, only to what are called measurable sets of
points in the sample space.

• e.g.: Intuitively, what would be the probability of drawing a point from the subinterval
[0, 1/2] if all points are equally likely? What about from [1/4, 1/2]?

• In general, we will characterize the uniform probability distribution on [0, 1] in terms of
a density function f(x). This is related to but NOT the same thing as f(x) = P (X(s) =
x) in the discrete case.

Defn: A density function f(x) for a continuous random variable X has the property that
the area under f(x) for any interval [a, b] is equal to the probability of drawing an x ∈ [a, b].

• In the case of U [0, 1], f(x) = 1 for all x ∈ [0, 1].
• Show graphically ...
• Demonstrate that P ([a, b]) equals area under f(x) for [a, b].
• What about the probability of drawing x = .358? Or what about the probability of
drawing x ∈ {.358, .989}? Defined as having “measure zero” (i.e., zero probability).
True for any collection of particular points, even if infinite.

• In calculus terms, a random variable X has a continuous probability distribution or
continuous density if there exists a nonnegative function f(x) defined on the real line
such that for any interval A ⊂ R,

P (X ∈ A) =
∫

A

f(x)dx.

(For those who haven’t had calculus, think of the S-like thing as another form of sum-
mation operator. This is like “the sum of f(x)timesdx, where dx is a very small number
so that f(x)dx is the area of a very thin rectangle, for all the points in the set A on the
x-axis.)

• Unlike in the discrete case, keep in mind that with a continuous probability distribution
f(x) is NOT the probability of the specific point x. The probability of specific point in
a continuous distribution is zero. Only intervals can have positive probability.
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• If dx is understood to be a very small number, e.g., .001, then it is correct to say that
f(x)dx is approximately the probability of a number in a very small interval around x.
(Illustrate graphically.)

• If f(x) is a probability density function, then

1. f(x) ≥ 0 for all x ∈ R.
2.
∫

∞

−∞
f(x)dx = 1. (I.e., the area under the whole curve is 1 = P (S).)

• Thus, a full specification of f(x) for U [0, 1] is

f(x) =

{

1 for x ∈ [0, 1]
0 for x < 0 and x > 1

(Note that the integral over (−∞,∞) works out here...)
• Why all this fuss over continuous random variables? One major reason is that the
important normal distribution is a continuous distribution: Illustrate graphically ...

• Just as we could define a cumulative distribution function or c.d.f. for a discrete prob-
ability distribution, we can do the same for a continuous distribution: F (x) = Pr(X ≤
x).

– Thus, F (x) is the probability that the random variable X realizes a value less than
or equal to the number x. Illustrate graphically for normal curve ...

– e.g.: What is the cdf of the uniform distribution on [0, 1]? work through ... Draw
F (x) = x ...

– Note how the cdf translates the density function into a different shaped curve that
summarizes the same info a bit differently. e.g., if you have a density function like
this (draw bell-shaped curve) ... Te area under the curve to the left of x is F (x).
Show how this gives an S-shaped cdf.

– A general point about cdf’s follows:

Thm : For all cdf’s, F (x) is non-decreasing in x, that is,

x < x′ ⇔ F (x) ≤ F (x′).

– Cdf’s do not have to be strictly increasing everywhere, just nondecreasing. Flat
parts of cdf’s correspond to intervals that have zero probability. Note that cdf’s of
discrete probability distributions will always have flat portions (in fact they will be
all flat portions with “jumps”).

6



4 Expectations and expected values

• Recall the idea of the mean or average as a measure of the central tendency of a variable
X: µ = 1

n

∑

xi.

• This has an important generalization when we move to the idea of a random variable
that has a probability distribution f(x):

The expected value or expectation of a random variable is like a mean of the variable
where the values it takes are weighted by the probability with which they occur.

• Consider a random variable X.

1. Suppose X has a discrete probability distribution function f(x), and that the values
X might assume are indexed x1, x2, x3, . . . , xn. Then the expected value or
expectation of X is defined as

E(X) =

n
∑

i=1

xif(xi).

We could also write E(X(s)) =
∑

s∈SX(s)P ({s}), in terms of the state space.
2. Suppose X has a continuous distribution with density function f(x). Then

E(X) =

∫

∞

−∞

xf(x)dx

(if this integral exists ...)

• The expectation E(X) is thus a weighted average of the possible values of a random
variable, where each value is weighted by its probability.

• e.g.: Let X = 1 if a fair coin turns heads, and X = 0 if it comes up tails. Then what is
E(X)? Let x1 = 0 and x2 = 1. Then

E(X) =

2
∑

i=1

xif(xi) = 0 ∗ .5 + 1 ∗ .5 = 1/2.

• e.g.: You are in a rush, and can only find parking in a tow zone. You will only be inside
for 30 minutes. You think the probability of a getting a ticket in this time interval is
.05, and the probability of being towed is .01. A ticket would cost $60, and being towed
would cost $300 in time and fees. Let X be a random variable that represents your
losses. What is E(X)?

E(X) =
3
∑

i=1

xif(xi) = 0 ∗ .94 + $40 ∗ .05 + $300 ∗ .01 = $7,
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where we let x1 = 0 and x2 = $40, and x3 = $300.

How think about this quantity? If you like, as the long run average of what you would
be losing if you could do this over and over again.

5 Properties of expectations

1. For a random variable X = b where b ∈ R is a constant, E(X) = b. That is, the
expectation of a constant is the constant. This follows directly from the definition of
E(X).

2. If Y = aX + b, where X and Y are random variables and a and b are constants, then

E(Y ) = aE(X) + b.

• Important: Thus, you can take the expectations operator E(·) “through” a linear
combination of a random variable. This again follows directly from definition of
E(·). Show ...

3. If X and Y are random variables, then E(X + Y ) = E(X) + E(Y ). Prove ...

• Important: It follows from the last two that you can “take expectations through”
any linear combination of random variables. e.g.: E(aX + bY + cZ) = aE(X) +
bE(Y ) + cE(Z).

• e.g.: The basic regression model, yi = a+ bxi + εi, or written as random variables,
Y = a+ bX + ε. Taking expectations we have

E(Y ) = E(a+ bX + ε) = a+ bE(X) + E(ε) = a + bE(X)

since E(ε) = 0.

4. Note that E(X +Y ) = E(X)+E(Y ) whether or not the random variables are indepen-
dent of each other. (Recall: Two random variables X and Y are independent of each
other if f(x, y) = f(x)f(y), where f(x, y) is the joint density function.

5. But this is as far as it goes: In general, it is NOT true that if φ(z) is a function (e.g.,
φ(z) = z2), E(φ(X)) = φ(E(X)).

That is: you cannot take the expectations operator “through” a nonlinear function.

• e.g.: It is not generally true that E(X2) = (E(X))2.
6. Nor is it generally true that E(XY ) = E(X)E(Y ).

• This will be true if the random variables X and Y are independent. Prove ...
• If X1, X2, . . . , Xn are n independent random variables, then

E(X1X2X3 · · ·Xn) = E(X1)E(X2) · · ·E(Xn).
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6 Variance

Just as we can think about means in terms of expectations, so we can think about variances:

Defn: Let µ = E(X), where X is a discrete random variable. Then the variance of X is
defined as

σ2(X) = V (X) = E[(X − µ)2] =
n
∑

i=1

(xi − µ)2f(xi),

• e.g.: Consider one flip of a “coin” that comes up heads with probability .7, and the
random variable X = 1 heads and X = 0 if tails. Note that E(X) = .3 ∗ 0+ .7 ∗ 1 = .7.

var(X) = E[(X − µ)2] =
n
∑

i=1

(xi − µ)2f(xi) = (0− .7)2 ∗ .3 + (1− .7)2 ∗ .7 = .21.

• e.g.: In general, for a Bernoulli trial with parameter p (a “coin” that comes up heads
each time with probability p), E(X) = p and

var(X) = (0−p)2(1−p)+(1−p)2p = (1−p)(p2+(1−p)p) = (1−p)(p2+p−p2) = p(1−p).

Discuss substantive meaning.

• e.g.: What are the mean and variance of a uniform distribution on the [0, 1] interval?

E(X) =

∫ 1

0

xf(x)dx =

∫ 1

0

xdx =
1

2
x2|10 =

1

2
− 0 = 1

2
.

var(X) =

∫ 1

0

(x−E(X))2f(x)dx =
∫ 1

0

(x−1/2))2dx = 1
3
(x−1/2)3|10 =

1

3
(1/8−(−1/8)) = 1/12.

Properties of variance

1. V ar(X) = 0 if and only if X(s) = c for all s ∈ S. That is, the variance of a constant is
zero (since it doesn’t vary).

2. For any a, b ∈ R, V ar(aX +B) = a2V ar(X).
This is worth working through, because the proof illustrates several properties of ex-
pectations.

Proof: By definition, V ar(aX+b) = E([aX+b−E(aX+b)]2). But, from the properties
of expectations. E(aX+b) = aE(X)+b. (You can take E(·) “through”.) Let µ = E(X).
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Thus,

V ar(aX + b) = E([aX + b− aµ− b]2)
= E([a(X − µ)]2)
= E(a2(X − µ)2)
= a2E((X − µ)2)
= a2V ar(X).

3. V ar(X) = E(X2)− (E(X))2.
Proof:

V ar(X) = E((X − µ)2), where µ ≡ E(X)
= E(X2 − 2Xµ+ µ2)
= E(X2)− 2µE(X) + E(µ2)
= E(X2)− 2µ2 + µ2
= E(X2)− µ2
= E(X2)− [E(X)]2.

This is just a useful fact.

4. If X1, X2, . . . , Xn are independent random variables, then V ar(X1 +X2 + . . .+Xn) =
V ar(X1) + V ar(X2) + . . .+ V ar(Xn).

In words, for independent random variables, the variance of their sum equals the sum
of their variances.

5. Discuss why var(X+Y ) 6= var(X)+var(Y ) when the two variables are not independent.
What would happen if, say, they were positively correlated?

7 Examples of the application of these properties

Question: Suppose we toss a fair coin n times. What is the expected number of heads, and
what is the variance (or standard deviation) of the number of heads that might appear?

• We are treating X = number of heads in n tosses as a random variable, and asking
what is E(X) and V (X) (or sd(X) =

√

V (X)).

• Formally,
E(X) ≡

∑n
i=1 xif(xi) =

∑n
i=1 xi

(

n

xi

)

(.5)xi(1− .5)n−xi and

V (X) ≡
∑n

i=1(xi − E(X))2f(xi) =
∑n

i=1(xi − E(X))2
(

n

xi

)

(.5)xi(1− .5)n−xi.
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• Yuck.
• But there is a much easier way: Think of X, the random variable representing the total
number of heads in n tosses as the sum of n random variables, one for each toss.

• LetXi be a random variable for the ith toss, so thatXi = 1 with probability .5 andXi =
0 with probability .5 (1 represents a head, 0 a tail). Observe thatX = X1+X2+. . .+Xn,
and note that E(Xi) = 1/2.

• From the result above,
E(X) = E(X1) + E(X2) + E(X3) + . . .+ E(Xn) = 1/2 + 1/2 + . . .+ 1/2 = n/2.

So the expected number of heads in n tosses of a fair coin is, naturally, enough, half the
number of tosses.

• And since the n tosses are independent, we have that
V (X) = V (X1) + V (X2) + . . .+ V (Xn).

But what is V (Xi)? Use the definition:

V (Xi) =

2
∑

j=1

(xj − E(Xi))2f(xj) = (0− .5)2 ∗ .5 + (1− .5)2 ∗ .5 = 1/4.

• So the variance of the number of heads in n tosses is just n/4, and the standard deviation
is
√
n/2.

• So, if it happens (as we will show soon) that in a large number of tosses – say 100 – the
number of heads that appears has a distribution that is approximately normal, then
about 68% of the time the number of heads that appears will be between 45 and 55
(since

√
100/2 = 5. In 1000 tosses, 68% of the time the number of heads should fall

within about 16 of 500, since 16 ≈
√

1000/4.

• The above analysis was for a fair coin, but we can easily generalize it to the case
of a sequence of Bernoulli trials, which are like flips of a coin that lands heads with
probability p ∈ (0, 1). Let X be the total number of “successes,” which occur on each
trial with probability p. The results are:

E(X) = np.

V (X) = np(1− p).

I strongly urge that you work through this on your own to convince yourself that this
is true (just follow the same steps as above). This comes in very handy for hypothesis
testing when the data you have is in the form of proportions.
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8 Some important distributions

A quick pass through some important probability distributions, plus how to generate vari-
ables with these distributions in Stata ...

8.1 The uniform distribution

• As we saw, a random variable X is distributed uniformly on [0, 1] (i.e., X ∼ U [0, 1])
when its probability density function is

f(x) =







0 if x < 0
1 if x ∈ [0, 1]
0 if x > 1

• Intuitively, this is like drawing a number from [0, 1] interval where all points in the
interval are equally likely.

• Illustrate with Stata: set obs 10000, gen x = uniform(), sum x. What will graph
x ,bin(10) look like?

8.2 Tossing coins with Stata

• We can use the random uniform distribution generator in Stata to simulate coin tossing:
set obs 10000, gen x = 1 if uniform() > .5, replace x = 0 if x == .

• Checking the binomial distribution: Treat these 10,000 flips as 1000 “experiments” in
which we toss the coin ten times and record the number of heads each time.

– gen caseno = n, gen trial = int((caseno-1)/10), egen heads = sum(x)
,by(trial), graph heads ,bin(11), tab heads

8.3 The Poisson distribution

• Imagine a sequence of random events occuring in time, such as incoming calls at a
telephone exchange, wars or international disputes occurring around the globe, cabinet
dissolutions in a parliamentary government, or annual number killed in the Prussian
army by horsekicks.

• Consider the random variable defined as the number of events occuring in some fixed
interval of time, which we can arbitrarily set equal to 1. Now imagine dividing this
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interval into equal segments of length 1/n, where n is large. If it is substantively ap-
propriate to suppose that the probability of an event occurring in any given subinterval
is constant, and that as n grows large the probability of two or more events occuring in
the same subinterval approaches zero sufficiently quickly, then this random variable X
will have a Poisson distribution:

f(x;λ) =
λxe−λ

x!
,

where f(x) is the probability that x events occur, and λ (“lambda”) is a parameter.

• Illustrate with Stata ... this is a discrete distribution potentially relevant for data on
variables that are counts of some event.

• It is possible to show that if X has a Poisson distribution,

µ(X) = var(X) = λ.

8.4 The normal distribution

• You have already seen that the probability density function for a normally distributed
random variable X is

f(x) =
1√
2πσ
e−

1

2
(x−µσ )

2

,

where µ = E(X) and σ2 = V (X).

• The notation X ∼ N(µ, σ2) reads “X has a normal distribution with mean µ and
variance σ2.”

• When µ = 0 and σ = 1, it is called a standard normal distribution.
• graph with Stata, review implications ... (area ...)
• How to draw a normally distributed random variable in Stata:

– e.g.: set obs 10000, gen x = invnorm(uniform()), graph x ,bin(50) normal.
Explain ...

• Some remarkable features of the normal distribution:

– IfX ∼ N(µ, σ2), then Y = a+bX ∼ N(a+bµ, b2σ2). In words, a linear combination
of a normal random variable is also a normal random variable.

∗ This is related to the fact that the normal distribution depends on arbitrary
mean and variance terms, so that multiplying by a constant and adding constant
affects these but not the underlying “shape” of the distribution.
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∗ This is also the basis for the important property that FPP emphasize in many
exercises: If you have a normally distributed variable X with mean µ and
variance σ2, you can calculate the probability that a draw from the distribution
will have a value less than x by converting x to standard units (z = (x− µ)/σ)
and using a standard normal table.

– If X ∼ N(µx, σ2x) and Y ∼ N(µy, σ2y), then X + Y ∼ N(µx + µy, σ2x + σ2y).
So, sums of normal random variables are also normally distributed. Show with
Stata. gen x = invnorm(uniform()), gen y = invnorm(uniform()), gen z
= x + y, graph z ,bin(50) normal. Show also graph y x, s(.) and graph z
x ,s(.). Interpret ...

8.5 How to generate normally distributed variables with correlation ρ.

• Using above results, corr z x. Now gen w = x + .3*y, corr w x, graph w x ,s(.).
What happens? Why?

• Suppose you want to create two standard normal variables that have correlation ρ. First
create two uncorrelated N(0, 1) variables (like x and y above). Then

gen z = ρx +
√

1− ρ2y.

• Illustrate with Stata ...
• Where does this come from?

– First, observe that

var(Z) = var(ρX +
√

1− ρ2Y )
= ρ2var(X) + (1− ρ2)var(Y )
= ρ2 + 1− ρ2
= 1.

So Z will have variance of one also (in fact, regardless of whether X and Y are
normal).
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– Second, note that

ρ = cov(X,Z)√
var(X)var(Z)

=
cov(X,ρX+

√
1−ρ2Y )

√

var(X)var(ρX+
√
1−ρ2Y )

=
1

n

∑

xi(ρxi+
√
1−ρ2yi)√

var(X)(ρ2var(X)+(1−ρ2)var(Y ))

=
1

n

∑

(

ρx2
i
+
√
1−ρ2xiyi

)

√
ρ2+(1−ρ2)

=
ρ 1
n

∑

x2i+
√
1−ρ2 1

n

∑

xiyi√
ρ2+(1−ρ2)

=
ρvar(X)+

√
1−ρ2cov(X,Y )√

ρ2+(1−ρ2)

= ρ√
ρ2+(1−ρ2)

= ρ.
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