
Accuracy and Time in RNN Attention Models

Raphael Palefsky-Smith
rpalefsk@stanford.edu

March 22, 2017

1 Introduction
Attention, attention! Neural network attention models al-
low networks to ”zoom in” on salient input regions, ig-
noring noise and focusing their processing power on ar-
eas that matter. This is a powerful tool for applied Ar-
tificial Intelligence - it has proven effective on Natural
Language Processing [1] and Computer Vision [2] tasks -
but it is also exciting for cognitive psychology. Attention
is explicitly biologically inspired, taking cues from the
foveation of the eyes. It offers a chance to poke and prod
at an artificial mechanism with clear neurological paral-
lels; if all goes well, neural network attention models can
teach us about human attention, and visa versa.

In this project, I altered the internal structure of one
such attention model, Gregor et al’s Deep Recurrent At-
tention Writer (DRAW) [3], to more closely model hu-
man attention. As my modification is fairly low-level, it is
important to understand how these attention mechanisms
work.

1.1 Background
Attention models have shown promise for text processing,
but I focused on standard image-based tasks. Whereas
traditional convolutional neural networks examine the
entire input image, attention-based networks move a
dynamically-sized window over subregions of the image.
The attention model must learn both its ”top-level” task
(often classification or image reconstruction) and how to
move the window to most effectively perform this task.
In Mnih et al’s RAM model [4], the window movement
strategy is trained via reinforcement learning. This model
is more performant than a baseline network, but the re-
inforcement learning component is clunky and inelegant.

Gregor et al’s DRAW, by contrast, is fully differentiable.
Both DRAW’s window movement strategy and classifica-
tion/reconstruction ability are trained simultaneously via
backpropagation, evolving together to minimize loss.

1.2 DRAW Mechanics

Gregor et al apply DRAW to different tasks including im-
age generation, but in the scenario that I examined, the
network is tasked with classifying a single MNIST digit
randomly placed on a noisy background. DRAWs core is
an LSTM recurrent network. At each timestep, the net-
work places a window on the input image, with both its
location and zoom level determined via learned connec-
tions from the image and previous hidden state. It then
outputs a classification of the contents of the window.

Figure 1: Movement of the attention window (Gregor et al)

The network is given a fixed number of timesteps
(glimpses), with only its final classification included in
the loss. This key point - that only the final glimpses clas-
sification matters - was the subject of my investigation.

1.3 My Modification

While considering only the final timestep might be com-
putationally efficient, it is not how human attention works.



This procedure is akin to telling a subject to stare at an im-
age for exactly ten seconds and only then report a classifi-
cation. Rather, humans prioritize time as well as accuracy,
attempting to classify visual stimuli as soon as possible
without too much error.

To better model this prioritization of time, I modified
DRAW to average the error at all timesteps into its loss,
rather than only including the final one. I refer to this al-
tered model as All-Step attention, and the original model
as Last-Step attention. I hypothesized that All-Step would
drive the network to minimize its classification error as
soon as possible, rather than waiting until the final step,
perhaps at the cost of overall classification accuracy. As
far as I know, this is the first attempt to make an attention
model’s loss more human-like.

Figure 2: Diagram of my modification, the All-Step model

1.4 Goals
I hoped to answer three main questions. First, how does
All-Step’s classification accuracy compare to Last-Step?
Does the additional loss inputs over-constrain the net-
work, and ruin its performance? Second, how quickly
do the two models train? Does All-Step attention signifi-
cantly slow things down? Finally, would All-Step’s win-
dow movement strategy, once visualized on images from
the dataset, differ qualitatively from Last-Step?

While I had initially hoped to compare the network’s
performance to human attention studies, I was unable to
find data (either eye foveation or time-vs-accuracy plots)
that matched the network’s architecture. However, there
was more than enough analysis to be done on the network,

and I do not believe that the human comparison is essen-
tial.

2 Methods
My implementation consisted of modifications to Jack
Lindsey’s DRAM model [5], which uses code from
Eric Jang’s TensorFlow implementation of DRAW [6].
DRAM is slightly simplified and allows one to train using
digit classification loss, rather than the image reconstruc-
tion loss used by the original paper.

2.1 Technical Details
The network takes as input 100 by 100 pixel images,
which consist of 28 by 28 pixel MNIST [7] images mod-
ified to add distortion and random translation. The at-
tention mechanism slides a parameterized filterbank over
the image and produces a 12 by 12 pixel patch. This is
fed through a 256-unit LSTM encoder, a 10-unit fully-
connected layer, another 256-unit LSTM decoder, two
fully-connected layers (256 and 10 units respectively),
and finally a softmax function to produce a classifica-
tion output. This process is repeated over 10 timesteps
(glimpses), with the hidden of the previous timestep’s de-
coder fed into the current timestep’s encoder.

Each network was trained for 5 epochs over 60,000
training examples using a batch size of 1, for a total of
300,000 iterations. The loss was minimized with the
ADAM optimizer using a learning rate of 10e-4 and a
beta1 parameter of 0.5. Gradients were clipped to a norm
of 5. The weights were checkpointed and test accuracy
computed every 1000 iterations. Training was performed
on an NVIDIA 1080 GPU.

At the implementation level, I slightly modified the net-
work code to allow for instrumentation. At each time step,
the network would additionally output its attention win-
dow coordinates, LSTM cell states, and computed 12 by
12 pixel patches.

2.2 Attention Visualizer
Inspired by the interactive tools from our homeworks, I
created an online program to visualize the two attention
models. The application runs entirely in the browser,

2



with no ssh or X11 required. It allows one to load im-
ages from the test set, compare the two attention mod-
els’ windows and probability outputs, and view the com-
puted 12 by 12 pixel glimpse at each time step. Addi-
tionally, one can evaluate different model checkpoints on
the same test image, allowing one to analyze the evo-
lution of the network’s behavior over the training pro-
cess. I’ve created a demonstration video of the tool which
can be viewed here: https://www.youtube.com/
watch?v=lDag7iP6BKQ. I hope it finds use beyond
this single project!

3 Results
After the lengthy training process, I conducted a series of
tests on the two trained models. Due to the time cost of
re-training the models, I focused on runtime experiments.
Here, I present the top-level quantitative and qualitative
results from these tests, with the nitty-gritty ”why” analy-
sis saved for Section 4.

3.1 Accuracy
For both models, I evaluated test-time accuracy using the
classification at the final time step, ignoring the previ-
ous steps. I expected the Last-Step model to significantly
outperform the All-Step model, as Last-Step attention is
specifically optimized for performance on this final step.
However, to my huge surprise, All-Step attention beat
Last-Step with a noticeable improvement.

All-Step 0.822
Last-Step 0.770
Difference 0.052

Percent Improvement 6.75%

Table 1: Classification accuracy on noisy MNIST test set

While these numbers fall short of the 0.95+ accuracies
[7] that have been attained on MNIST, we must remember
that this is on noisy, distorted MNIST images. Running
through some of the test set, I was frequently unable to
classify the digits myself! Due to distortions and obstruc-
tions, many of the digits lose their distinctive shape, and
so these accuracy figures seem reasonable.

In addition to its overall accuracy boost, the All-Step
network successfully learned to predict the digit as soon
as possible. When accuracy is plotted at each time step,
and not just at the end, it is immediately clear that the
All-Step model’s loss function has taken effect.

Figure 3: Classification accuracy of Last-Step model at each
glimpse

Figure 4: Classification accuracy of All-Step model at each
glimpse. It works!

This result is not especially surprising, since the net-
work is entirely reliant on its loss function and will hap-
pily contort itself to attain a lower loss. Nevertheless, the
improvement in overall accuracy is puzzling, and was a
focus of my analysis.

3

https://www.youtube.com/watch?v=lDag7iP6BKQ
https://www.youtube.com/watch?v=lDag7iP6BKQ


3.2 Training Time
I evaluated the test set accuracy (again, using the final
step) every 1000 iterations, and plotted both models to
compare:

Figure 5: Classification accuracy over the training process

Immediately, two trends jump out. First, that both mod-
els roughly follow an S-curve, starting at low accuracy
and moving steeply up to high accuracy. But the Last-Step
model begins its climb much sooner, starting around itera-
tion 6,500. The All-Step model starts climbing around it-
eration 110,000 and its climb is much more gradual. Sec-
ond, that the Last-Step model’s accuracy wildly fluctu-
ates. All-Step is relatively stable, but Last-Step is all over
the place, dropping below 0.6 accuracy and swinging back
up.

Both of these trends seem to point towards the All-Step
loss acting as a regularizer, a theory I will revisit in the
Analysis section.

3.3 Window Movement
Finally, I loaded the test set into the Attention Visualizer
(Section 2.2) and observed the window movement behav-
ior and classification output. With few exceptions, I ob-
served the trend illustrated on the following page.

The All-Step model ”locks on” to the image by
Glimpse 5, and keeps its window almost identically
placed throughout the following steps. The window is
not particularly tight around the digit, covering a small
to medium sized area. Mirroring the window lock, the

model chooses the correct class with very high probabil-
ity starting at Glimpse 5. The classification predictions
fluctuate very slightly, but it is remarkably consistent.

The Last-Step model, in contrast, exhibits very odd be-
havior. Rather than locking on early and holding window
size consistent, it zooms its window smaller and smaller
until Glimpse 8. At this point, its window is much smaller
than the All-Step’s. And until this point, its classification
probabilities are all roughly equal, with no clear pick.

After this point, however, it rapidly chooses the correct
digit, and predicts it with high probability in Glimpses 9
and 10. And strangely enough, its window actually grows
larger, moving without explanation. To anthropomophize
the model, it appears that it searches until Glimpse 8, de-
clining to make a prediction until it is sure. Then, it sud-
denly makes up its mind, and convinced of its prediction,
it no longer needs to accurately control its window and
allows it to drift. It seems likely that this is the result of
the LSTM’s advanced memory/forgetting abilities.

4 Analysis
Due to the models’ long training time, I didn’t get as much
time for analysis as I would have liked. So, the following
analyses are more explorations and suggestions for future
inquiry than definitive, final answers.

4.1 Accuracy and Training Time
After seeing the All-Step model outperform the Last-
Step’s accuracy, I set out to explain the discrepancy. My
hunch was that the All-Step loss acts as a regularizer.
Since the loss is the mean of 10 different classification er-
rors, it should act almost like a minibatch and smooth out
the gradient updates. This would also explain the All-Step
model’s slower ”accuracy climb” - regularization leads to
higher test accuracy, but can slow down training with its
retardant effect.

I wanted to see if my regularization theory had any
legs, so I turned to visualizing the models’ weights over
time. Since the models have thousands of parameters,
it is impractical to analyze them individually. Instead, I
iterated through each checkpoint, and computed the Eu-
clidean distance between each weight matrix and its value
at the last checkpoint. I then divided these raw distances

4



Figure 6: Sequence diagram

5



by the size of the matrices to yield a per-parameter dis-
tance measure invariant to the dimensions of the weight.
Large distances would mean a significant update, and
small distances would mean those parameters stayed rel-
atively constant.

Figure 7: Euclidean distance to previous checkpoint’s LSTM
decoder weights, plotted against the Last-Step model’s accu-
racy. Red arrows indicate weight update spikes that correlate
with Last-Step accuracy dips.

After plotting the weight deltas, I found that the Last-
Step’s LSTM decoder weights had huge spikes. And
after plotting them against the Last-Step’s accuracy, it
was clear that large decoder updates occurred right be-
fore large dips in accuracy. So, it looks like the accuracy
fluctuations described in Section 3.2 are highly correlated
with - though not necessarily caused by! - large decoder
weight updates. I plotted the All-Step’s weight updates
on the same scale, and it does not exhibit the same spikes.
This provides even more evidence that the All-Step loss is
a regularizer.

Finally, I was curious if the Last-Step’s reduction in
accuracy was uniform across all digit classes, or was fo-
cused on a few digits. I computed confusion matrices
for both models, and then subtracted the All-Step’s ma-
trix from the Last-Step’s. This means that positive values
in the matrix are predicted by the Last-Step more than
the All-Step, and negative values are predicted more fre-
quently by the All-Step.

Interestingly, the accuracy dip appears strongly focused
on 1, 3 and to some degree, 5. When compared to the All-
Step, the Last-Step model makes fewer correct (diagonal)

Figure 8: Last-Step confusion matrix minus All-Step confusion
matrix

predictions, and overpredicts 1, 3, and 5. It is unclear
why this is the case. 1, 3, and 5 are not particularly simi-
lar in appearance, so it seems unlikely that the correlation
is based on their visual structure. I attempted to trace the
overprediction back to the weights themselves, but there
are so many different moving parts - the encoder, the de-
coder, and the three different hidden layers - that I was
unable to find conclusive evidence. This would be a great
candidate for further exploration; clearly, there is a pattern
to the Last-Step model’s error, but its cause eludes me.

4.2 Window Movement
As described in Section 3.3, the Last-Step model exhibits
a strange window movement pattern: it behaves normally
until around Glimpse 8, gradually reducing its window
size and homing in on the digit while outputting rela-
tively uniform classifications. After Glimpse 8, however,
it strongly predicts a single digit and counterintuitively in-
creases the size of its window.

I hypothesized that this behavior stems from the
LSTM’s memory-management functionality. The LSTM
cell can learn to selectively remember or forget stored in-
formation, and weight this stored information with the
current input. It can also control how much of this past in-
formation is included in its output. Unfortunately, Tensor-
Flow’s LSTM implementation does not expose the low-
level input, forget, and output gates. (In future explo-
rations, the LSTM could be re-implemented and its in-

6



dividual parameters explored). So, I chose to examine
the LSTM’s cell vector, which controls its memory ac-
cess. Much like my analyses of weights over time, I
plotted the Euclidean distance between cell vectors at
each timestep. A large value means that the cell state
changed significantly between glimpses, and therefore,
the LSTM’s memory-management ”strategy” has shifted.

Figure 9: Euclidean distance to previous glimpse’s LSTM de-
coder cell

Here, we can see the Last-Step’s decoder state changes
rapidly at Glimpses 7, 8, and 9. In contrast, the All-Step’s
decoder state barely changes, with its rate of change ac-
tually decreasing as time progresses. This does not prove
anything, but it highly supports the theory that the Last-
Step’s odd behavior change has its basis in the LSTM cell
state. For good measure, I also plotted each model’s en-
coder change over time (Figure 10).

However, I do not see as clear of a pattern or differ-
ence in the encoder state deltas. Once again, the Last-Step
model has more change in its LSTM cell state, but there
is no dramatic uptick as in the decoder. This makes sense,
for it is the decoder’s output that feeds directly into both
the classification and the next glimpse’s window location.
The encoder is separated from both of these outputs by
several matrix multiplications.

Without a thorough analysis of the currently-
inaccessible input, forget, and output gates it is hard to
describe how, exactly, the Last-Step’s decoder LSTM
is behaving. But given that its memory-controlling cell
state fluctuates rapidly right when the model’s behavior
changes, a link seems very likely.

Figure 10: Euclidean distance to previous glimpse’s LSTM en-
coder cell

5 Discussion
While there are still many unknowns buried deep in the
LSTM weight matrices, let us return to the three simple
questions I posed in Section 1.4.

5.1 Questions Answered
How does the modified loss function affect accuracy?
Not only does it successfully force the model to predict
the digit sooner, it increases overall accuracy. The latter
property is likely due to implicit regularization over the
timesteps, and a similar effect could probably be achieved
in fewer timesteps using explicit regularization.

How does the modification affect training time? Again
due to this (probable) regularization, the All-Step model
takes longer to converge. However, it appears that the
wait is worth it, as it ends up at a higher accuracy than the
Last-Step model. The Last-Step model suffers from ex-
treme accuracy fluctuations, which are highly correlated
with large weight updates that the All-Step’s regulariza-
tion cancels out.

Finally, how is window movement behavior impacted?
The All-Step model’s behavior is actually the more ”ratio-
nal” one, locking its window to the digit and staying put.
The Last-Step model exhbits an odd strategy of zooming
in on the digit, making a strong classification, and then
moving its window haphazardly. This seems to be the re-
sult of its LSTM decoder’s memory behavior.

7



5.2 Limitations and Future Work

I see three main limitations to my work. First, that all ex-
periments were performed at test-time. With more GPUs
and training time, it would be interesting to try various
weightings of the timestep losses, rather than just a sim-
ple mean. Could the network be trained to predict even
sooner? It would also be worth investigating ”learning
when to stop.” My implementation fixes the number of
glimpses at 10, but it appears that many of these timesteps
are unnecessary, as the All-Step model simply repeats the
classification from the previous steps. Dynamic stopping
would be even more human-like, as people do not usually
keep staring at an image after they’ve figured out what
it contains. It might be tricky to perform this operation
in a fully-differentiable manner, but it is definitely worth
looking into.

Second, my analyses did not dive deep enough into the
raw weights. The Last-Step model’s preference for 1, 3,
and 5 remains elusive, as does the exact workings of the
decoder LSTM that leads to odd window movement. With
more time and more powerful tools, the accuracy and be-
havior issues could be traced to the source.

Finally, I did not get the chance to compare the model
to real human performance. Given the aforementioned
problem of fixed-length sequences, I doubt the model in
its current state could be easily evaluated with regards to
human experimental data. However, if the model were
”taught how to stop,” its accuracy-over-time could likely
be compared to humans performing the same task.

5.3 Conclusion

The All-Step model not only models human attention bet-
ter than the Last-Step model, it enjoys a significant accu-
racy boost. There are many questions yet to answer, but
one thing is clear: this model is worthy of our attention.

6 Acknowledgements
I am enormously grateful to Jay McClelland, who gave
me the idea for this project and provided invaluable feed-
back. I am also indebted to Steven Hansen for his analy-
sis suggestions and TensorFlow debugging expertise. Fi-
nally, a huge thank-you to Jack Lindsey and Eric Jang for

their well-written and easily-extendable code.

References
[1] Minh-Thang Luong, Hieu Pham, and Christo-

pher D Manning. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.

[2] Feng Wang and David M. J. Tax. Survey on the atten-
tion based RNN model and its applications in com-
puter vision. CoRR, abs/1601.06823, 2016.

[3] Karol Gregor, Ivo Danihelka, Alex Graves,
Danilo Jimenez Rezende, and Daan Wierstra.
Draw: A recurrent neural network for image
generation. arXiv preprint arXiv:1502.04623, 2015.

[4] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.
Recurrent models of visual attention. In Advances in
neural information processing systems, pages 2204–
2212, 2014.

[5] Jack Lindsey. Dram. https://github.com/
jlindsey15/DRAM, 2016.

[6] Eric Jang. draw. https://github.com/
ericjang/draw, 2016.

[7] Yann LeCun and Corinna Cortes. MNIST handwrit-
ten digit database. 2010.

8

https://github.com/jlindsey15/DRAM
https://github.com/jlindsey15/DRAM
https://github.com/ericjang/draw
https://github.com/ericjang/draw

	Introduction
	Background
	DRAW Mechanics
	My Modification
	Goals

	Methods
	Technical Details
	Attention Visualizer

	Results
	Accuracy
	Training Time
	Window Movement

	Analysis
	Accuracy and Training Time
	Window Movement

	Discussion
	Questions Answered
	Limitations and Future Work
	Conclusion

	Acknowledgements

