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Introduction 
 
This project addresses the topic of regularization errors in past tense verb formation in 
English and is based on previous work by Kim Plunkett and Virginia Marchman on 
modeling learning past tense verb inflection in English using connectionist nets, From rote 
learning to system building: acquiring verb morphology in children and connectionist nets 
(1993). 
 
 Language acquisition by children has long been a topic that has interested me, as I’ve been 
fascinated both by the success of such a difficult task as language acquisition for children 
and by the bizarreness of utterances made by children of various ages.  
 
This project serves as a launch point for the enrichment of my own understanding of neural 
networks—how they work and the computational situation for which they can be 
implemented—by implementing my own neural network, with the scaffolding of previous 
work, on a psychological, computational problem that interests me. 
 
In Plunkett and Marchman (1993), a feed forward back propagation network (FFBP) is 
implemented to explore how incremental quantitative and structural changes to the verb 
vocabulary during training can give rise to qualitative shifts in network organization—
specifically, they are looking for conditions that give rise to a U-shaped learning pattern, 
which is observed in children. This pattern consists of three stages: 1) generally all verbs 
are inflected correctly (by rote memorization), 2) then regularization errors occur (by 
competition between how different subclasses of verbs are treated), and 3) generally all 
verbs are inflected correctly again (by having found a working solution to this competition 
issue).   
 
The exact purpose of my project will be to explore myself one specific aspect of this study: 
the effect of the network’s vocabulary size on how the network handles novel, 
phonologically legal, indeterminate verb stems. (Indeterminate verb stems possess no 
defining characteristics about their verb class.) Per Plunkett and Marchman, the expected 
result is that as the vocabulary size of the network increases, the tendency to adopt 
suffixation (regularization) as the default mapping strategy also increases. Additionally, I 
will explore another of Plunkett and Marchman’s findings: that additional training at a 
certain vocabulary size does not increase the rate of suffixation. 
 
Method  
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Using the PDPyflow software, I implemented my own FFBP network. The network has 57 
input units, 76 hidden units, and 95 output units. My training data comes from previous 
work by colleagues of Jay McClelland. In the data phonemes are represented by a 19 bit 
code. (Phonemes are mapped to bits based on factors such as place of articulation.) The 
network learns to map three-phoneme verb stems to five-phoneme past tense verbs. Inputs 
are oriented such that the third phoneme right before the verb ending is always in the same 
place. The network has a learning rate of 0.1 and momentum of 0. The hidden layer and 
output layer connections are randomly initialized in the range [-1, 1] and use the sigmoid 
activation function. 
 
Following Plunkett and Marchman, the training data consists of 500 verb stems, which 
includes the following distribution of verb subclasses: 2 arbitrary verbs (e.g. go, went), 458 
regular verbs, 20 identity verbs (e.g. hit, hit), and 20 vowel change verbs.  
 
Plunkett and Marchman used only artificial, phonologically legal verb stems; however, 
given the availability of data, the accessibility of the data, and the time need to process the 
data to construct the vocabulary I used a combination of real English verbs and artificial 
verbs.  
 
In my training data, the two arbitrary verbs are artificial. This was done to follow Plunkett 
and Marchman’s guidelines that all verbs have three-phoneme stems and that there be no 
relation between verb stem and inflected form for arbitrary verbs. In addition, six identity 
verbs are artificial. This was done to meet the constraints that the number of identity verbs 
be twenty and that verb stems be three phonemes long. These verbs are a contraction of 
identity verbs with longer than three phonemes stems such that they still end in the /t/ or 
/d/ phoneme, as necessary for this subclass.  
 
One additional note, Plunkett and Marchman, having created all of their verbs artificially, 
chose four subclasses for all vowel change verbs to fit into. Such a distribution of subclasses 
doesn’t actually occur naturally in English. Given this, I chose to include verbs from the 
seven largest subclasses (out of 23 subclasses present) in the training data I had in order to 
create enough regularity of patterns in the vowel change verbs so that my network may 
succeed in mapping these verbs. These subclasses are (in my data’s phonological code) aI – 
I, @U – u, I - V, aI - @U, i – e, I - &, and eI – U. Each subclass has two to four members. 
 
Review of training set 
Regular verbs (458) 
Act Adore Cap Sheet Leak Miss Weave Piece Wait Claw Arch Move Turn Loose Love Flee 
Rib Rain Oust Lord … … … 
Arbitrary verbs (2) 
tiz  kige (k-aI-g) 
kurb  pal 
Identity verbs (20) 
Beat Bet Bid Cut Hit Hurt Let Put Rid Set Shed Shut Wed Wet Cot* Cat* Wit* Burt* Pit* Ped* 
[*constraint-fitted forms of identity verbs: Cost, Cast, Quit, Burst, Spit, and Spread] 
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Vowel change verbs (20) 
Bite Blow Dig Feed Grow Hide Lead Light Meet Read Ride Ring Rise Shake Sing Sit Take 
Throw Win Write 
 
The training procedure is based on Plunkett and Marchman’s vocabulary expansion 
schedule. First, an initial training set is constructed following this distribution of 
subclasses: 2 arbitrary verbs, 10 regular verbs, 4 identity verbs, and 4 vowel change verbs. 
Verbs are chosen at random during construction. In addition, I followed Plunkett and 
Marchman’s method for taking word frequency into account. The arbitrary verbs are each 
in the initial training set 15 times, and each of the other verbs 5 times.  
 
This initial training set is trained on the network until “perfect”. I’ve defined perfect as have 
an error less than 0.1 for each bit. Then an expansion schedule is carried out: every five 
epochs, a new verb is added to the training set. This new verb is chosen from an 80% 
regular, 20% not regular distribution. These new verbs are added with a frequency of 
three. This continues until the training set contains 100 verbs. After this, every epoch a new 
verb is added to the training set. This new verb is chosen from the same regular/not 
regular distribution and is added with a frequency of one. This continues until the training 
set contains all 500 verbs. 
 
The network is tested on a list of 50 novel, artificial, indeterminate verb stems. These were 
adapted from data from McClelland’s colleagues. Phonologically legal regular past tense 
inflections were created for these verbs. The distribution of regular past verb phonemes is 
55% /d/ (28), 29% /t/ (14), and 16% /ed/ (8). This distribution matches the distribution 
found in the regular verbs in the total training set. In testing, an error of 0.1 for each bit is 
acceptable, as before with the initial training set. 
 
Review of training and test set statistics 
Vowel change (20) Identity (20) Regular (458) Regular – Test (50) 
I - V (2) 
eI - U (2) 
aI – I (3) 
@U - u (3) 
aI - @U (3) 
I - & (3) 
i - e (4) 

ends in /d/ (15) 
ends in /t/ (15) 

/d/ (253) - 55%  
/t/ (133) - 29%  
/ed/ (72) - 16%  

/d/ (28) - 55%  
/t/ (14) - 29%  
/ed/ (8) - 16% 

 
Review of statistics for each training stage 
 Stage 1: Initial training Stage 2: New verb 

every 5 epochs, 
frequency of 3 

Stage 3: New verb 
every 1 epoch, 
frequency of 1 

Number of verbs in 
vocabulary 

20 100 500 

 2 arbitrary (10%) 
10 regular (50%) 

2 arbitrary (2%) 
78 regular (78%) 

2 arbitrary (0.4%) 
458 regular (91.6%) 
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4 identity (20%) 
4 vowel change (20%) 

11 identity (11%) 
9 vowel change 
(9%) 

20 identity (4%) 
20 vowel change 
(4%) 

Number of tokens in 
vocabulary 

120  360 760 

 30 arbitrary (25%) 
50 regular (41.7%) 
20 identity (16.7%) 
20 vowel change 
(16.7%) 

30 arbitrary (8.3%) 
254 regular (70.6%) 
41 identity (11.4%) 
35 vowel change 
(9.7%) 

30 arbitrary (4.2%) 
634 regular (83.4%) 
50 identity (6.6%) 
46 vowel change 
(6.1%) 

 
Review of statistics of regular verbs for each training stage 
 Stage 1: Initial training Stage 2: New verb 

every 5 epochs, 
frequency of 3 

Stage 3: New verb 
every 1 epoch, 
frequency of 1 

Number of verbs in 
vocabulary 

10 regular  
 

78 regular 
 

458 regular 
 

 6 /d/ (60%) 
4 /t/ (40%) 
0 /ed/ (0%) 

41 /d/ (52.6%) 
25 /t/ (32.1%) 
12 /ed/ (15.4%) 

253 /d/ (55.2%) 
133 /t/ (29%) 
72 /ed/ (15.7%) 

Number of tokens in 
vocabulary 

50 regular 
 

254 regular 634 regular 

 30 /d/ (60%) 
20 /t/ (40%) 
0 /ed/ (0%) 

135 /d/ (53.1%) 
83 /t/ (32.7%) 
36 /ed/ (14.2%) 

347 /d/ (54.7%) 
191 /t/ (30.1%) 
96 /ed/ (15.1%) 

 
Results  
 
Initial results 
 
 Epoch Total 

error 
% verbs 
suffixed 

% /d/ 
correctly 
suffixed* 

% /t/ 
correctly 
suffixed* 

% /ed/ 
correctly 
suffixed* 

after initial 
training 

500 400.827 18 77.8 n/a n/a 

after 
vocab=100 

900 156.421 24 100 33.3 0 

after 
vocab=500 

1258 67.75 62 100 70 0 

* of the /x/ verbs suffixed at all, % of them that are suffixed correctly 
 
Averaged results 
 
These are averaged results over a sample of ten trials. 
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 % verbs 
suffixed 

% /d/ 
correctly 
suffixed 

% /t/ 
correctly 
suffixed 

% /ed/ 
correctly 
suffixed 

after initial 
training 

16.6 70.5 85.2 n/a 

after 
vocab=100 

26.2 99 37 n/a - 0 

after 
vocab=500 

57 100 63.9 0 

 
As expected, that the tendency to adopt suffixation as the default mapping strategy indeed 
increases as the vocabulary size increases. 
 
Halting vocab growth + Additional training 
 
Stopping at vocab=50: Averaged results from ten trials 
 after initial training after vocab=50 500 epochs later 
% verbs suffixed 17 19.2 22.2 
 
Stage 1 to Stage 2 increase (400 total epochs of training and vocab growth) = 2.2% 

 Rate of change per epoch = 0.0055 %/epoch 
Increase in suffixation after 500 additional training epochs = 3% 

 Rate of change per epoch = 0.0050 %/epoch 
 
Stopping at vocab=100: Averaged results from ten trials 
 after initial training after vocab=100 500 epochs later 
% verbs suffixed 15.4 27.8 30.4 
 
Stage 1 to Stage 2 increase (400 total epochs of training and vocab growth) = 12.4% 

 Rate of change per epoch = 0.031 %/epoch 
Increase in suffixation after 500 additional training epochs = 2.6% 

 Rate of change per epoch = 0.0052 %/epoch 
 
Analysis  
 
First, I’ll start with why we see an increase in suffixation, touching on the particulars of 
each subclass of regular verbs. Then, I’ll focus on the how halting vocabulary growth with 
additional training affects the rate of suffixation, a finding from Plunkett and Marchman 
that I found interesting.  
 
Why do we see an increase in overall suffixation (regardless of correctness)? Simply, there 
are many more regular verbs in the vocabulary and tokens thereof in the training set that 
any other subclass of verbs. It’s important to note that, while suffixation increases, in none 
of the trials on any test were all of the /d/ verbs, the most common (55.2%) regular verb 
subclass, suffixed. This is a result of the weight of the other subclasses given their influence 
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in the initial training set, which is trained until “perfect.” The number of tokens for regular 
/d/ verbs jumps from 30 in Stage 1 to 135 to 347 by Stage 3. Compared to the combined 
tokens of all other subclasses – 70 in Stage 1 to 106 to 126 by Stage 3 – we see that the 
other subclasses have more of an influence at the beginning but are quickly overcome in 
influence by /d/ regular verbs in the next two stages. Moreover, even given the many more 
epochs of training the Stage 1 verbs that were trained until “perfect” have, the new verbs 
added, which aren’t trained to perfection, exert more of a force on mapping strategies than 
the initial training set, indicating that a more natural process of learning from the world, 
which involves an accumulation of exposure to quite varied different kinds of verbs, is 
more important for learning the strategy of regularizing novel past tense verbs than 
training until “perfect” on a closed training set, as we typically see with neural networks.  
 
Why do we see a decrease and then an increase in correct suffixation for /t/ ending regular 
verbs? In Stage 1 there is an average of 85.2% of /t/ verbs that are suffixed being suffixed 
correctly, and in Stage 2 this drops to 37% and goes back up to 63.9% in Stage 3. For Stage 
1, there were 6 trials with 1 suffixation, 2 trials with 2 suffixations, 1 trial with 3, and 1 trial 
with zero. Given the statistics of the training set – 40% of the regular verbs were /t/ verbs 
– the network gains fairly good exposure to how to map appropriate verbs to the /t/ 
ending, and this can explain why at the beginning sometimes a /t/ verb would be mapped 
correctly. However, during the next two training stages, the network receives a very 
different proportion of exposure to regular verbs: in Stage 2 and 3 the proportion of tokens 
of regular verbs is about 55%/30%/15% (d/t/ed). This creates competition for strategies 
for mapping regular verb stems to their appropriate endings. This is corroborated by /t/ 
verbs very often being mapped to /d/ in Stage 2 and 3, reflected by the 37% correctly 
suffixed in Stage 2 and 63.9% suffixed in Stage 3. The increase then from Stage 2 to Stage 3 
can be explained as the network finding a partial solution to this competition issue. 
 
Why can’t the network correctly suffix /ed/ ending regular verbs? No /ed/ verbs in any 
trial were suffixed at all in Stage 1. Only in 3 trials in Stage 2 were any  /ed/ verbs suffixed, 
though none correctly, and while some /ed/ verbs were suffixed in every trial in Stage 3, 
none were correctly suffixed here either. Firstly, there are so few /ed/ verbs in the whole 
vocabulary and by chance none in the initial training set. /ed/ regular verbs make up only 
14.4% of the entire vocabulary. The percent of tokens that are /ed/ grows from 0% to 
14.2% to 15.1%. It is interesting to note though that many /ed/ verbs in Stage 1 were 
mapped to the “empty” ending. This can be explained by the influence of identity verbs in 
the training set and onward, as the stems for identity verbs end in either the phoneme /d/ 
or /t/ just like the stems of /ed/ verbs do. The poor performance of /ed/ verbs here is most 
personally interesting for me, as I’ve experienced both a 3-year-old native speaker and an 
8-year-old English learner mysteriously use, what I then perceived as, the present tense of 
a verb instead of the past tense (i.e. drop the /ed/ ending completely). 
 
Now I will focus on how halting vocabulary growth with additional training affects the rate 
of suffixation. In Plunkett and Marchman (1993), they found if vocabulary growth were 
halted at any vocabulary size and then they continued training for many for epochs that the 
rate of suffixation would remain about steady. 
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Plunkett and Marchman (1993) 
 
My data is inconclusive in showing this same effect. With more programming ability, I could 
have attained more conclusive data, but nevertheless I’ll proceed with what I have. In 
stopping vocabulary growth at 50 and then training for an additional 500 epochs, the rate 
of change in suffixation per epoch decreased from 0.0055 %/epoch to 0.0050 %/epoch. In 
stopping vocabulary growth at 100 and continuing training, the rate of change in 
suffixation per epoch decreased from 0.031 %/epoch to 0.0052 %/epoch. While in both 
cases, there is a decrease and it could be the case that the rate of suffixation is steadying 
out, many more data points at different numbers of additional training epochs and different 
sizes of vocabularies would be need for more conclusive results.  
 
Discussion 
 
Taking Plunkett and Marchman’s data (above) offers a starting point for this discussion. 
This steady rate of suffixation even given more training seems to be more evidence for 
what I said previously about the influence of exposure to more verbs (adding verbs to the 
training set) compared to the influence of more training on a closed set. It’s interesting that 
even though in each case of vocabulary size the training set will eventually reach 
“perfection” by more training, this doesn’t affect the rate of suffixation for novel verbs. 
There is evidence that accumulated exposure to many kinds of verbs is more important for 
adopting the regularization strategy for novel verbs is more important than exposure to a 
consistent set of verbs. 
 
This conclusion matches well a picture of the world. It is important to note that the 
language children are exposed to, while certainly coming from a certain probability 
distribution for classes of words in a given language (as taken into account with the 
creation of the initial training set and the vocabulary expansion schedule, per Plunkett and 
Marchman), is also accumulated quite haphazardly, and this particular accumulation of 
language exposure is also (more?) important in forming our understandings of how our 
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language works – which can be demonstrated by the fact that native speakers of a language 
tend to inflect novel, artificial verbs regularly.  
 
Limitations of this work include the formation of the total verb vocabulary, in which all 
verbs had to begin with three phonemes and vowel changing verbs were poorly 
represented compared to their naturally occurring distributions. The training until 
“perfect” of the initial training set is also only a very rough approximation of an infant’s 
exposure to verbs – not to mention that no other aspects of language that may affect how 
we come to understand verbs are taken into account in this model. My own limitation in 
programming and scripting affected the quality of data I attained in my results from halting 
vocabulary growth. And lastly, it’s worth mentioning, that modeling learning says nothing 
definitively about how the brain does these computation – it provides us only an example 
of how such a computation can work. 


