
Iterated Prisoners Dilemma
with Reinforcement Learning

Keven (Kedao) Wang
Department of Computer Science

Stanford University
kvw@stanford.edu

Abstract

This project uses recurrent neural network based reinforcement learning to play
Iterated Prisoner’s Dilemma. Multiple experiments are carried out with varying
strategy compositions: RL-agent vs. stationary strategies, RL-agent vs. RL-agent,
more than two RL-agents, and a mix of strategies. Cooperative behavior emerged
in some RL-agent vs. RL-agent scenario. Non-uniform strategies evolved in some
tournaments where number of RL-agents greater than two. Q-table and markov
matrix are used to analyze agents’ learned strategies. A high variance is observed
across trials when using Q-learning without experience replay.

1 Intro

Reinforcement learning effectively maximizes an agents expected cumulative discounted reward. In
a conventional reinforcement setting, the environment is fixed. What if there is a game among mul-
tiple agents, and the agents’ actions change the environment? In particular, in a prisoner’s dilemma
game, an agent’s reward depends on all agents actions. I hope to explore this problem via iterated
games of prisoners dilemma. i.e. prisoner’s dilemma repeated multiple times. For a single game of
prisoners dilemma, the nash equilibrium is where both agents defect, which is not a globally-optimal
result. The questions this project tries to answer are: Can an RL agent learn to play:

- vs. a deterministic strategy?
- vs. another RL agent?
- among multiple RL agents?
- among mixed strategies?

Further, are changes in hyper-parameters needed in order for different strategies to occur? How
important is the environment in terms of players strategies? How do strategies evolve with respect
to the distribution of strategies in the environment? Most of these questions have been answered by
tournament with hand-engineered strategies. The goal of this project is to use reinforcement learning
to train neural network agents.

2 Related Work

Iterated Prisoner’s Dilemma is a widely studied topic across disciplines. This project gets inspiration
from the 1996 paper by Sandholm[1], where an Elman recurrent neural network was used learn the
Q values. Essentially a single previous step is taken as input to the RNN. In comparison, this project
uses the newly developed LSTM cells for RNN, with longer time steps and up to two layers. This
project also explores the tournament settings, where more than two players are involved.

1

Figure 1: Iterated Prisoner’s Dilemma consist of multiple single games of prisoner’s dilemma, re-
peated across time.

Figure 2: A typical prisoner’s dilemma payoff matrix

3 Approach

3.1 Game Set up

A single prisoner’s dilemma game consist of two players. Each player choose one of two ac-
tions: cooperate (C) or defect (D). A payoff matrix specifies the reward given the action pairs:
T (Temptation), R (Reward), P (Punishment), S (Sucker). For a valid prisoner’s dilemma game:
T > R > P > S. The most frequently used reward values are T = 5, R = 3, P = 1, S = 0. In this
paper, unless otherwise stated, we will use these default reward values.

There are two types of games played:

• Finite-episode game: the game ends after n number of episodes. The cumulative dis-
counted reward is defined as

∑n
t=1 rtγ

t, where rt is reward of single prisoner’s dilemma
game at episode t, and γ is discount rate of reward. It can be proven through backward in-
duction that the nash equilibrium for a finite-episode iterated prisoner’s dilemma, the nash
equilibrium is to always defect. A quick proof is as follows: at the last episode, both agent
should defect. Given this information, both agent should defect in the previous episode. So
on and so forth. I want to use the finite-episode as a sanity check, to prove that our agent is
learning the value properly.

• Infinite-episode game: the game never ends. The cumulative discounted reward is defined
as

∑∞
t=1 rtγ

t. In order to provide teaching signal to the RL agent, at each episode I com-
pute the loss for the last n episodes, and use that as the teaching signal. The loss is defined
below. The cumulative discounted reward from the last n episodes is computed, and used
as a metric for an experimenter to judge an agent’s performance against others. This score
is evaluated as

∑i
t=(i−n) rtγ

t, where i is the current episode being played.

3.2 Markov Matrix

In prisoner’s dilemma, a markov matrix specifies the probability of an action given a state. Here
the possible actions are to defect or cooperate. The state is the pair of previous actions of self and
oponent: (prev own action, prev opponent action). Therefore we can define one-
step markov matrix as four probabilities: P (D′|CC), P (D′|CD), P (D′|DC), P (D′|DD). For
example, P (D′|CD) represent the probability of an agent defecting, given that in the previous

2

Figure 3: Markov matrix of different strategies: always cooperate, always defect, tit-for-tat

episode the agent himself cooperated while the opponent defected. Since there are only two actions,
knowing the probability of defecting gives us the probability of cooperating: P (C) = 1−P (D). In
Figure3 we provide some common markov matrices of stationary prisoner’s dilemma strategies.

There has been research showing that only one single previous state is needed, in order to define
any prisoner’s dilemma strategy[2]. This suggests that the one-step markov matrix offers sufficient
insight into an agent’s behavior. In the experiments below, I use the markov matrix as a tool to
analyze an agent’s behavior.

3.3 Reinforcement Learning Agents

Our RL agents are not envious, meaning an agent only cares about maximizing his own score, not
achieving a higher score than his opponent. This is achieved by optimizing an agent’s expected
cumulative discounted reward. This is a simplifying assumption.

I also allow our RL agents to have memory, meaning an agent can use previous actions of opponent
and self in order to inform his next action. This is achieved by using a recurrent neural network that
takes previous n episodes of history as input. n is a hyper-parameter that can be tuned.

The agent learns value function via Q-learning, a reinforcement learning technique that iteratively
updates expected cumulative discounted reward Q given a state s, and a future action a.

Qnew(st, at) = (1− α)Qold(st, at) + α(rt+1 + γ ·max
a

Qold(st+1, a)) (1)

Where α is the learning rate, γ is the discount, rt+1 is the reward received after taking action at in
the current episode.

3.4 Network Architecture

In our game, the state for a single episode is the pair of previous actions of self and oponent:
(prev own action, prev opponent action). At inference time, the RNN takes a list
of action pairs up to n previous episodes as inputs in order to infer the next action. At training time,
after every n episodes, the RNN back-propagate the loss across last n episodes through the network
to update weights. The loss is defined as:

loss =
1

n

n∑
i=1

||Q−Qpred||2 (2)

Where Qpred is the Q-table iteratively learned by the network, Q the label is the Q-table from n
episides before. In other words, we have a moving target of label Q, which is learned over time.
Counter-intuitively, this technique works well to make Q-table converge after extended period of
training. To approach the Q-learning task, I used one to two LSTM layers.

4 Experiments & Results

I performed a number of experiments varying the hyper-parameters. Notably, there is significant
variance across trials while using the exact same hyper-parameters. I was suggested that by using
experience-replay, one can introduce independency between the episodes played, and the variance

3

Figure 4: Q-learning agent’s network architecture

could be reduced. I ran out of time to explore this option. In the following experiments, where run
time is reasonable, I run the game multiple times and report the output distribution.

4.1 Tournament Set up

A game consist of multiple single prisoner’s dilemma games. We call each individual game an
episode. A game can have a finite or infinite number of episodes. In the case of infinite-episode
game, I break up the episodes into rounds, for human evaluation purposes. Each round consist of n
number of consequtive episodes. At the end of each round I evaluate cumulative discounted score
for the round, and use that to evaluate the performance across agents. In the case of two agents, a
round consist of a single sub-game: agent 1 vs. agent 2. In the case of three agents, a round consist
of three sub-game: agent 1 vs. agent 2, agent 2 vs. agent 3, agent 1 vs. agent 3, aka the pairwise
combination among all agents. The Q-table for each agent is persisted across rounds.

4.2 Hyper-parameters

A number of hyper-parameters affect the performance of the network. In particular, the following
parameters are used, unless otherwise stated:

learning rate: single layer: 0.01, two layer: 0.001
Reward discount γ: 0.95
Hidden state size: 10
Reward structure: T = 5, R = 3, P = 1, S = 0
Epsilon ε: 0.2
Epsilon decay rate: 0.9999
Number of episodes per round n: 10
Strategy types: Q-learning single layer, Q-learning two layer,
Tit-for-Tat, Always Cooperate, Always Defect

4

Figure 5: In a finite-episode game, Q-learning agent successfully learns cumulative discounted re-
ward

4.3 Finite Episodes

As a sanity check, I set up a finite-episode game of 10 episodes. Here each game has exactly one
round. The future reward after n episode is zero. The game is repeated multiple times. I ran a
one layer Q-learning agent against an always defecting agent. The RL agent learns to defect each
episode. Table 5 shows action value vs. episode index. The agent is able to learn a mathematically
accurate representation of the action value for each episode.

Notably, the earlier episode’s Q values takes longer time to converge as compared to later episodes.
This is because the earlier episodes requires adequate information from later episodes, which takes
time to propagate. This problem worsens with increased number of episodes per round n.

4.4 Infinite Episodes

After verifying that our RL agent is learning, I apply it to the more interesting case of infinite-
episode games. Roughly 400 experiments are run, in order to tune the hyper-parameters and collect
interesting results.

The agent is played against Tit-for-Tat. Tit-for-Tat mirrors opponent’s action from last episode, and
is shown to perform well in an evolutionary setting[3]. The agent converged to multiple distinct
strategies across trials. The following four strategies emerged for a given round, where 0 means
cooperate, 1 means defect. For a given trial, the agent would repeatedly play one of the following
action sequences toward the end of the game:

[0 0 0 0 0 0 0 0 0 0]: RL agent learns to always cooperate

[0 1 0 1 0 1 0 1 0 1]: RL agent learns to alternative between cooperate and defect

[1 1 0 1 1 0 1 1 0 1]: RL agent learns to cycle the “cooperate, cooperate, defect” action sequence

[1 1 1 1 1 1 1 1 1 1]: RL agent learns to always defect

Notably, in all four cases, the agent does not receive worse scores consistently than its opponent.
This is a surprising result, given that the agent’s RL objective does not take into account the oppo-
nent’s score. For each case, the markov matrix and Q-table learned by the agent is vastly different.
Figure 6 lists three converged strategies. The markov matrix can be understood as choosing the
best actions given state with probability, which maximizes cumulative discount reward. For ex-
ample, for cyclic 110 strategy, the Q value of state DCD’ (prev own action: defect,
prev opponent action: cooperate, current own action: defect) = 38.65
is higher than Q value of Q(DCC’) = 13.38. This corresponds to the markov matrix entry P(DC) =
1, indicating the agent will always defect, if in the previous episode agent defected and opponent
cooperated.

I ran 10 trials for Q-learning agent vs. Tit-for-Tat, varying the number of LSTM layers (1 and 2).
Experiments results are in Table 1.

5

Figure 6: Q-learning against tit-for-tat in a game and three of the converged strategies. Left: always
defect (111). Center: alternating (1010). Right: cyclic (110).

Table 1: Converged Strategies: RL agent against Tit-for-Tat

Strategy Count (1 layer) Count (2 layer)

000 5 7
110 5 0
111 0 3

4.4.1 Q-learning Agent vs. Tit-for-Tat

4.4.2 Q-learning Agent vs. Q-learning Agent

I also let two Q-learning agents play against each other across 10 trials, and varying the number of
LSTM layers (1 and 2). The two layer network fails to discover the globally optimal strategy of
always cooperating. While the one layer network discovers it 2 out of 10 trials. In both cases, the
two networks’ learned Q-tables are similar in value. Experiments results are in Table 2. Typical
action sequences and Q-values are shown in Figure 7.

Interestingly, a degenerative case occured 1 out of 10 trials, for both sets of trials. In the degenerative
case, one network dominates the other network, by defecting all the time. While the other agent
alternates between cooperate and defect. It is not clear to me why this degenerative case occured.

4.4.3 Multiple Q-learning Agents

When greater than two Q-learning agents are playing against each other, the converged strategy
is most often always defect. However, there are some interesting cases, where distinct strategies
evolved. In most cases, one or few high-flyer strategy evolved to take advantage of all other agents,

Table 2: Converged Strategies: RL agent against RL agent

Strategy Count (1 layer) Count (2 layer)

000 2 0
111 7 9
1111 - 1010 (degenerative) 1 1

6

Figure 7: Two Q-learning agents in a game and multiple converged strategies. Left: always defect
outcome. Right: always cooperate outcome.

Figure 8: Greater than two Q-learning agents in a tournament. Non-uniform strategies converged.

by defecting all the time. While the other agents converge in a local optimal by always cooper-
ating among themselves. Due to the long run time required, I did not perform multiple trials to
demonstrate any statistical significance. Some trials are shown in Figure 8.

4.4.4 Q-learning Agents and Stationary Strategies

I then seeded the player pool with stationary strategies. When the player pool consist of two Q-
learning agents and one always defect agent, all three agents learn to defect always. The hope
was that an agent can learn to identify different opponents (always defect vs. not), and learn to
play differently depending on the opponent type. However, this did not happen. There are two
hypothetical approaches to develop this capability: use a larger number of episodes per round, so that
the network can identify action sequences that represent signatures of a strategy. Another approach
would be to append a player identifier (e.g. an int) to the state input, that simply identify the
opponent without revealing the particular strategy.

7

Figure 9: Left: 2 Q-learning agent + 1 always defect agent. Right: 2 Q-learning agent + 1 always
cooperate agent.

When the player pool consist of two Q-learning agents and one always cooperate agent, interesting
behavior occurs in one trial. One of the Q-learning agent learns to defect always, and therefore
receiving the highest score. The other Q-learning agent learns to almost always cooperate. This
is likely because the aggressive Q-learning agent learned early on that defecting is optimal, and
therefore starts defecting always. While the passive Q-learning agent receives conflicting teaching
signals. From the always cooperating agent, the passive player learns that cooperating results in
reward of 3. While from the agressive agent, the passive player learns that defecting results in
reward of 1. This distorted payoff matrix might have slowed down the exploration process for the
agent. Some results are shown in Figure 9.

5 Discussion

In this project, I showed that a Q-learning agent can learn to play against a Tit-for-Tat agent without
losing, that two Q-learning agents can learn to cooperate with each other with some low probability.
In the case of more than two players, the results are harder to interpret.

There was a significant variance across trials. One direction would be to introduce experience replay
that has been shown to decrease variance. Another direction is to implement policy gradient, and
compare the variance in results.

In order to balance the explore vs. exploit ratio, I adopted an annealing epsilon. Thompson sam-
pling has been shown to explore the environment faster[4]. In particular, dropout has been shown
to approximate Thompson Sampling when applied to neural networks in a reinforcement learning
setting[5]. It will be an interesting experiment to compare the converence speed between the two
approaches.

In the case of mixed strategy players, an RL agent has not been able to identify the opposing player.
Ideally the RL agent would learn this via the action sequences of opponent. However, to bound the
computation, one could provide a hint by adding the opponent player ID in the input state.

The team concept has been introduced to multi-player tournament. At the 20th-anniversary iterated
prisoner’s dilemma competition, a team from Southampton University in England introduced a new
strategy that relied on collusion among agent teammates to win the competition[6][?]. The strategy
relied on the fact that, the performance of a team depends only on the score of the highest player.
Therefore, the agent will play a sequence of actions as signatures for opponent to identify itself,
afterwhich one agent will sacrifice itself by always cooperating, while the other agent always de-
fecting to receive the highest possible score and hence win the comptition. It will be interesting to
introduce the team concept with neural network based RL agents, and explore if similar colluding
behavior occurs.

8

Acknowledgments

Thanks to Steven Hansen and James McClelland for the project advice for this Psych 209 course
project at Stanford.

References

[1] Tuomas W Sandholm and Robert H Crites. Multiagent reinforcement learning in the iterated
prisoner’s dilemma. Biosystems, 37(1-2):147–166, 1996.

[2] William H Press and Freeman J Dyson. Iterated prisoners dilemma contains strategies that
dominate any evolutionary opponent. Proceedings of the National Academy of Sciences,
109(26):10409–10413, 2012.

[3] The axelrod tournaments. https://lawrules.wordpress.com/2011/09/05/
the-axelrod-tournaments/. Accessed: 2017-03-21.

[4] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances
in neural information processing systems, pages 2249–2257, 2011.

[5] What my deep model doesn’t know... — yarin gal - blog — cambridge machine learning group.
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html. Accessed:
2017-03-21.

[6] Alex Rogers, Rajdeep K Dash, Sarvapali D Ramchurn, Perukrishnen Vytelingum, and
Nicholas R Jennings. Coordinating team players within a noisy iterated prisoners dilemma
tournament. Theoretical Computer Science, 377(1-3):243–259, 2007.

[7] Wikipedia. Prisoner’s dilemma — wikipedia, the free encyclopedia, 2017. [Online; accessed
21-March-2017].

[8] Prisoner’s dilemma strategies.
[9] David W Stephens, Colleen M McLinn, and Jeffery R Stevens. Discounting and reciprocity in

an iterated prisoner’s dilemma. Science, 298(5601):2216–2218, 2002.
[10] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.
[11] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,

1992.
[12] Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement

from a finite universe. Journal of the American statistical Association, 47(260):663–685, 1952.

9

https://lawrules.wordpress.com/2011/09/05/the-axelrod-tournaments/
https://lawrules.wordpress.com/2011/09/05/the-axelrod-tournaments/
http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html

	Intro
	Related Work
	Approach
	Game Set up
	Markov Matrix
	Reinforcement Learning Agents
	Network Architecture

	Experiments & Results
	Tournament Set up
	Hyper-parameters
	Finite Episodes
	Infinite Episodes
	Q-learning Agent vs. Tit-for-Tat
	Q-learning Agent vs. Q-learning Agent
	Multiple Q-learning Agents
	Q-learning Agents and Stationary Strategies

	Discussion

